
Technical Reference Guide v4.5

Detailed technical information for
VARs, OEMs and System Integrators

Revision 4.5.0662

For more information about JAGUAR SX and BYTESPHERE software products,

please visit our Web site at www.bytesphere.com or contact us at:

ByteSphere LLC

260 Franklin Street, 11th Floor

Boston, MA 02110, USA

617-475-5209

support@oidview.com

www.oidview.com

ByteSphere is a registered trademark and the other product names are the trademarks of ByteSphere LLC
for its proprietary computer software. No material describing such software may be produced or distributed
without the written permission of the owners of the trademark and license rights in the software and the
copyrights inthe published materials.

The SOFTWARE and documentation are provided with RESTRICTED RIGHTS. Use, duplication, or
disclosure by the Government is subject to restrictions as set forthin subdivision (c) (1) (ii) of The Rights in
Technical Data and Computer Software clause at 52.227-7013. Contractor/manufacturer is ByteSphere LLC,
260 Franklin Street, 11th Floor, Boston, MA 02110

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form
or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written
permission of the publisher.

General notice: Other product names mentioned herein are used for identification purposes only and may
be trademarks of their respective companies. Windows is a registered trademark of Microsoft Corporation.

JAGUAR SX
Copyright © 2007-2012 by ByteSphere LLC - All rights reserved.

4	 |  TABLE OF CONTENTS

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

Contents
Introduction . . 6

Jaguar SX 6

Jaguar SXME. 6

Supported Browsers 7

Supported Platforms 7

What is Jaguar? 6

Why use Jaguar?. 7

Licensing. 8

Certification. . 10

Support . . 10

System Overview. 11

Jaguar SX External Components 11

Jaguar SXME Internal Engine Components 11

Supported Monitoring Technologies and Protocols . . 12

Intellectual Property 13

3rd Party IP 14

ByteSphere IP 13

System Requirements 15

Licensing Requirements 15

Software Requirements. 15

Installation . 16

Generic Install - OSX 16

Generic install via Fully automated applet. 16

Generic Install - Windows Platforms 16

Headless Install - Unix Platforms (OSX, Linux, Solaris). 16

Jaguar Setup and Configuration 17

Checking the Version and System State 18

Database Rollups. 19

Database Storage and Data Output. 18

Database Web Interface 19

Installing the license file 17

Jaguar Web Interface. 20

JVM Configuration 17

Polling Configuration 21

Polling Frequency. 20

Polling Performance. 21

Starting and Stopping the Monitoring Service 17

Custom Poller schedules. 23

Suggested Setup Configurations 24

Integrated Data Collector (Service Providers) 25

MSP or Distributed Enterprise 24

OEM Data Collector (3rd Party Vendors) 25

Stand-alone NMS. 24

System Properties. 26

engineconfig.properties file. 26

API . . 50

API Operations List 52

API Response Codes. 51

Common API examples 67

Monitor Configuration. 69

AccessConfig. 70

AgentConfig. 70

ConfigUpdate File. 69

	 TABLE OF CONTENTS  |	 5

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

MonitorConfig 70

MonitorConfig sample. 71

Monitor section attributes. 71

Monitor Types 72

Monitor Exceptions. 73

Monitor Objects 73

Monitor Relations. 73

Monitor Type system files. 72

Monitor Definition Files 74

Built-in Functions. 78

Custom Functions. 80

Declare section 75

Expressions Section 77

Init section. 74

Query Section 75

Reserved Keywords 78

Discover Files. . 81

Filename format. 81

File structure 82

Extending the Engine using Code. 87

Extendable Components 87

Get the SDK. 87

Database. . 88

Administration 88

Automated Rollups. 88

Configuration Tables. 90

Data Tables 89

Performance 88

Supported Databases 88

Exception Engine. 93

Exception Parameters. 93

Triggering an Exception. 93

Notifier . . 95

Duplicate Events 95

Notifier Events 95

Notifier Users 95

Report Engine 96

PDF Reports 96

Report Arguments via API 97

Report Results 100

Report Types. 96

Running and Retrieving Reports 97

Glossary. . 102

6	 |  INTRODUCTION

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

Introduction
What is Jaguar?
Jaguar software is the fruit of more than 6 years of intensive development, and is –we
believe – the most advanced system of its kind for IT Monitoring and Management of a
wide range of network sizes and configurations. Jaguar currently comes in two formats, a
stand alone engine (SXME) and a fully integrated NMS product including an embedded
database and WEB UI (SX).

Jaguar SXME
SXME is an ultra-Scalable and eXtensible Monitoring Engine (SXME). With the most
advanced, fastest and most scalable automated data collection software framework,
SXME can be used by itself as a fully stand-alone system (see SX), or integrated with
any 3rd party NMS, EMS, BI, reporting or dashboard system to provide efficient data
collection, sorting and delivery to your data and reporting sources. Data sampling can
be done with any of a variety of protocols and polling frequency can go down to 100
millisecond intervals. Data is analyzed in REALTIME and actions can be performed
based on pre-defined criteria. Information and data can be displayed, automatically
exported or shared with 3d party applications for MTBF reporting, capacity planning,
and other functions limited only by your needs and imagination. SXME’s customers
are primarily Hardware and Software companies that want to OEM or integrate with a
monitoring or reporting solution.

Jaguar SX
SX is a fully-featured Network Monitoring, Alerting, and Reporting Solution, that sits
on top of the SXME platform. Event Management is performed by normalizing different
types of events and displaying them in a “normalized” alert view. Hosts can be viewed in
terms of groups, subnets, or monitored capabilities. Historical and Realtime reports can
be run on any groups of items, monitors or hosts over any period of time. Dashboards can
be created with a couple clicks, and different types of information including charts, grids,
and maps can easily be added or removed. SX customers are resellers and end-users.

	 INTRODUCTION  |	 7

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

Why use Jaguar?
For the end-user, Jaguar acts as an affordable monitoring and reporting system
supporting both Fault and Performance Management. It can rival the effectiveness and
even surpasses the performance (with respect to the polling of performance data), of the
largest, most expensive management frameworks.

Integrators, MSPs and VARs can use Jaguar as an add-on to an existing NMS or as one
or more remote pollers and/or data-collectors in the end-user or customers’s environment.

For OEM use, Jaguar can save engineering and QA teams months and sometimes even
years of development and test time... as integration is fast and extension is fairly painless.
Using this guide, an engineering team can readily customize and extend monitoring
and reporting metrics to meet specific requirements using either meta-data or code (our
technical staff can help, too, if necessary).

Supported Platforms
Jaguar is a high-performance, low memory footprint, Java based monitoring solution
that runs on just about any platform that supports a JVM (e.g. Windows, Linux variants,
MacOSX (intel platforms), Solaris Sparc 64bit), even embedded systems. A minimum
of the Java 6u1 JRE is required in order to run. In most circumstances, 64-bit machines
should always run the 64-bit version of the JRE. This may require an extra download and
installation of Java. See http://java.com/en/download/manual.jsp

Supported Browsers
The WEB-UI interface is based on a HTML5 / Javascript engine using a lot of AJAX
and runs very well in most modern browsers (e.g. Chrome 22+, Firefox 16+, Safari 6+,
Opera 12+). Functionality in Microsoft Internet Explorer is limited to IE9 and above (we
recommend 10+), and will not work correctly in compatibility mode. Internet Explorer
IE8 or below are not supported.

http://java.com/en/download/manual.jsp

8	 |  INTRODUCTION

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

Licensing

Jaguar is licensed on volume of elements monitored “monitors”, in increments of
“hosts”. The licensing model is essentially a derivative of “device-based” licensing,
except we take into account the size of the device as well. We automatically figure this
out for you, and can easily tell you with a simple command how many licenses are being
used and how many licenses each host uses as well (for more information please see the
API chapter in this document, and refer to the command system.license.usage). This
greatly simplifies the licensing model for the end-user and resellers alike.

What is a Host?

A host is any agent/machine/device with an IP address and less than 100 monitored
elements. The idea is that average sized devices will each will be counted as a single
host. If a particular device is very large (with respect to the number of elements being
monitored on it), then it will subsequently be counted as more than 1 host. The latter case
is very rare, but can happen. For example, the majority of devices are discovered with an
average of 30 monitored elements (please see the definition of “Monitor”, below). If a
host supports more than 100 monitored elements (3x the average), then each subsequent
100 monitored elements that the device supports counts as another “host”. E.g.: A host
supporting 1000 monitored elements will count as 10 licensed “hosts”.

	 1 host		 2 hosts	 5 hosts	 10 hosts

system.license.usage

	 INTRODUCTION  |	 9

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

What is a Monitored Element?

A monitor is an element that was discovered on a host and represents a group of
statistics that will be polled for data each poll period. A monitor can support as many as
128 polled statistics and as few as 1 (the average is 20). Examples of monitored elements
are ethernet ports, CPUs, hard-disks, fans, sensors, power-supplies, etc.

Each ethernet port is a monitored element.

In the example of the Ethernet Port as a monitored element, that particular base monitor
type (‘interface’) supports more than 30 statistics, including but not limited to, Bytes In,
Bytes Out, Utilization (In/Out/Total), Bits, Discards, Errors, Packets, Unicast Packets,
Multicast Packets, Broadcast Packets, Latency, Availability, OperStatus, AdminStatus,
etc. Derivatives of that base type (such as Cisco Lans or Wireless Lans), could add
another 20-30 statistics easily.

The more things Jaguar monitors, the more licenses are needed. The Jaguar Discover
process reaches out to each devices and creates monitored elements for everything
that the device supports. To decrease the number of monitors that count towards a host
license, simply “Disable” that monitor using the UI or API (see the User Guide or the
section in this document on API). Conversely, to purchase additional host licenses for
more monitoring capability and data collection, please contact our sales department by
calling 617-475-5209 or using the form: http://www.oidview.com/contact.html

http://www.oidview.com/contact.html

10	 |  INTRODUCTION

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

Certification
Jaguar supports a large number of general device models and hundreds of vendors ‘out of
the box’. New monitoring support and device models can be supplied by our certification
team or implemented by your team. To find out more about how to extend the system
using just META-DATA and XML files, please see the sections on Monitor Types,
Monitor Defintions, and Discover Files.

In order for our team to add support for a new device or technology, we will need a
certification request submitted, which will include a snapshot of the device output (e.g.
a mibwalk, traplog, or syslog, etc.), as well as any relevant technical documentation
(i.e. ASN.1 MIBs, reference guides, etc.). Your request will be acknowledged within 24
hours, but please allow up to 30 days for our team to complete your request and get you a
patch for your newly supported device.

To submit a certification request, please see our page online: http://www.oidview.com/
certification_request.html

Support
Our support staff is here to help. Our team can provide answers to most questions by
using web-based methods (email and Instant Messenger). If you need additional priority
support services (like phone, on-site, after-hours, or development services), please
contact us and we will give you a quote by calling 617-475-5209 or using the form:
http://www.oidview.com/contact.html

http://www.oidview.com/certification_request.html
http://www.oidview.com/certification_request.html
http://www.oidview.com/contact.html

	 OVERVIEW  |	 11

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

System Overview
Jaguar SX External Components
There are 3 major external software components that comprise the entire Jaguar SX
solution platform.

Console UI 		 Provides native system console application interface
Jaguar SXME	 Provides monitoring functionality, runs as a background service
WEB UI		 Provides web-based interface

All three of these components can run on any platform and come with separate installers.

Jaguar SXME Internal Engine Components
JaguarSXME is comprised of several “engines” that make up the overall monitoring
and reporting system. Not all engines have to be running at the same time, and most
can be disabled/enabled by using the properties configuration file, discussed later in this
document. The following core engines are run by default on startup:

AnalysisEngine	 The module that analyzes and correlates collected data in realtime
ApiEngine		 The API module that provides direct communication
DatabaseEngine	 The database module that provides local storage access
DiscoverEngine	 The module that interrogates the network for inventory to poll
DispatchEngine	 The module that dispatches scheduled jobs, including polling
EventEngine		 The module that processes event-based information
MonitorEngine	 The core engine that launches all other engines
NotifierEngine	 The module that processes severity based events and notifies users
OutputEngine	 The module that processes and outputs data
PollerEngine		 The module that polls statistical and configuration information
ReportEngine	 The module that generates report data
SyslogEngine		 The module (based on EventEngine) that processes Syslog Events
TrapEngine		 The module (based on EventEngine) that processes SNMP Traps
WebEngine		 The module provides a WEB UI (based on Jetty)

12	 |  OVERVIEW

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

Supported Monitoring Technologies and Protocols
The core monitoring technologies include:

Events		 SNMP Traps, Syslog Events
Ping		 ICMP, HTTP, TCP Ports
Query		 SQL, WMI (wip), XML
Statistics	 SNMP, SNMPv2, SNMPv3, IPMI (wip), AMF

The engine can be extended by using META-data or custom code to extend and enhance
the supported monitoring capabilities, for just about any situation. Please see the
certification and extending code sections.

	 OVERVIEW  |	 13

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

Intellectual Property

ByteSphere IP
The core Jaguar MonitorEngine technology has been awarded 1 patent from the USPTO
and there is another patent pending. All of our core IP is written by U.S. based engineers
and is not outsourced. ByteSphere also has two additional patents awarded that are
related to MIB databases and repositories, and MIB detection and acquisition.

There are many pieces of technology that stand out in our Monitoring Engine, making it
stand out from the rest. Following are just some of the highlights...

Adaptive Polling

Our patented Adaptive-Polling technology allows the engine to automatically adjust for
MIB or data changes in the agent, without getting bad polls or losing data (like most
other systems).

Realtime Polling

Our poller can poll at nearly any polling frequency, all the way down to every 100ms if
desired. Our realtime, on demand poller allows for timely 3rd party data acquisition or
realtime updating charts.

Realtime Data Analysis

Our REALTIME data analysis technology in the exceptions engine not only allows for
deep introspection and correlation of data based on polled or calculated values, but does
so in memory at poll time, without having to query a database or schedule an hourly or
daily job.

14	 |  OVERVIEW

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

Non-Blocking Ultra-Scalable Architecture

Our patent-pending architecture enables the system to not only poll data at incredibly fast
speeds, use a (comparatively) small footprint, but can scale to incredibly large numbers
of polled devices on a single server and eliminates nearly every source of I/O bottleneck
under the most strenuous situations.

Extensible and Customizable

Our highly extensible device model allows users (using XML files only), to define any
set of statistics or relate anything in a variety of ways, with multiple levels of hierarchy.
(e.g. data aggregation is handled automatically in realtime by the Analysis Engine - no
special code has to be written).

3rd Party IP
The Jaguar MonitorEngine uses a number of commonly available, open-source
frameworks in the form of “Jars”, libraries that are separate from the core code, but
referenced when necessary. Most of these libraries use the LGPL, MIT, or Apache
license. For an up to date, full list of open-source and 3rd party libraries used, please
see the file disitributed with the core engine install (e.g.: /monitorengine/lib/
thirdparty_license_information.txt)

thirdparty_license_information.txt

	 REQUIREMENTS  |	 15

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

System Requirements

Software Requirements
Jaguar will run on nearly any machine running a Windows, OSX, Linux, or Solaris
operating system, with a minimum JRE 1.6 installed. No other software is needed to run.

Hardware Requirements
Jaguar can run on a virtual machine or a physical one. Memory requirements vary, as
it will perform OK in a JVM with a very small amount of RAM (i.e. 32M), but will
take as much as it needs as the monitoring requirements grow. On the average, it uses
between 200-300M for monitoring 100 devices. If monitoring up to 100 hosts, it can run
either on a shared machine or a VM. The general rule is to have 512-1024M extra for the
engine to use, and at least 2 CPU cores. Following are some minimum memory and CPU
requirement guidelines for different configurations:

CONFIG SIZE REQUIREMENT GUIDELINES
10,000 monitors (100 hosts) 1G RAM, 1 CPU, 2 Cores, 50G disk (2G database)
100,000 monitors (1,000 hosts) 8G RAM, 2 CPUs 2 Cores each, 500G disk (200G database)
1,000,000 monitors (10,000 hosts) 16G RAM, 2 CPUs 4 Cores each, 8T SAN Array (2T database)

Licensing Requirements
Jaguar will run in restricted mode for 1 host and up to 100 monitors. When a license
file is placed into the installed directory, it will automatically read it and license itself.
Multiple licenses can be placed into the directory, as long they all start with the text
license.jaguar.key (e.g. license.jaguar.key.005056091D0A.monitor). This helps when
there are multi-homed NICs or if a machine dynamically attaches via VPN.

16	 |  INSTALLATION

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

Installation

Once running, the installer is self-explanatory, but it may be a challenge either getting it
to run or figuring out which one to use. Here are some tips to help get things moving.

Generic install via Fully automated applet
There is a web-based installer (signed) applet online that should cover most installation
scenarios, operating systems and environments. Unless encountering a problem or
directed by support, this installation method should be used. Please get the most current
applet installer link from support.

Generic Install - Windows Platforms
There are 32-bit and 64-bit installers for Windows platforms. Pick the installer that
matches your operating system, and simply double-click on the installer. Make sure you
are running it as Administrator. Follow the prompts once loaded.

Generic Install - OSX
Download and launch the DMG as administrator. Follow the prompts once loaded.

Headless Install - Unix Platforms (OSX, Linux, Solaris)
At times it will be necessary to install the engine on a unix machine from a command
line. After you download the installer, follow the steps:

1. Change the SH script to executable:
	 chmod 755 monitorengine_unix_45.sh

2. Execute the script as root or using sudo, using the -c parameter:

	 sudo ./monitorengine_unix_45.sh -c

	 SETUP AND CONFIGURATION  |	 17

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

Jaguar Setup and Configuration

This chapter discusses the more common configuration aspects of the engine after the
initial installation. The properties mentioned here are all editable in the engineconfig.
properties file, and explained in the System Properties section of this document.

JVM Configuration
The Java Virtual Machine must be configured correctly in order to be able to monitor
large numbers of devices. The installer puts a file named monitorengine_svc.vmoptions
into the monitorengine directory, with some basic defaults. This file must be edited in
order to setup the JVM properly according to your needs. You can specify the standard
JVM memory and garbage collection arguments, each on it’s own line. Example:
-Xmx8196m

Starting and Stopping the Monitoring Service
After the installation, the MonitorEngine Service will have been started automatically.
You may need to stop / start the service at some point manually in the future.

Windows

Go to Windows Services (or run services.msc), and find the “OiDViEW MonitorEngine
Service”. Stop and Start as needed.

Linux and OSX

In the installed directory, find the monitorengine_svc file.
To run, sudo ./monitorengine_svc -start
To stop, sudo ./monitorengine_svc -stop

Installing the license file
Simply copy the license.key file provided by sales or support into the installed directory.
Then, run the command: ./xmlApiClient -o system.license.load

18	 |  SETUP AND CONFIGURATION

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

Checking the Version and System State
From a command prompt, run the following commands:
xmlApiClient -o system.alive
xmlApiClient -o system.version

Database Storage and Data Output
Will Jaguar be storing data in a database? If so, by default all data (configuration,
historical statistics, and event data), will be stored internally using the high-performance
embedded database (using H2 database technology). Otherwise, collected data can be
stored in an external database like MySQL, SQL-SERVER, or Oracle. The database can
be local or remote to the polling engine. Finally, one can choose to NOT store data in a
database, but to simply output it as a CSV, XML, or SQL file. These files are output to
the /monitorengine/output directory.

Properties settings for the databases are as follows:

DATABASE PROPERTY SETTING
No Database db_type=none
H2 Database (default) db_type=h2
MySQL Database db_type=mysql
SQLServer Database db_type=sqlserver

The other database settings (excluding type), must be changed according to your
particular situation (for example, SQLServer, the db_name is usually the instance name).
Following are the default database settings on install:

db_host=localhost
db_name=bytesphere
db_pass=bytesphere!
db_user=bytesphere

	 SETUP AND CONFIGURATION  |	 19

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

For all these database settings, the output-engine must be configured to use SQL Engine:
output_engine_fqcn=com.bytesphere.outputengine.SqlEngine

To output all statistics and configuration data to flat files, use the following settings:
output_engine_fqcn=com.bytesphere.outputengine.CsvEngine
output_engine_fqcn=com.bytesphere.outputengine.XmlEngine
output_engine_fqcn=com.bytesphere.outputengine.SqlEngine

Database Web Interface
If using the default H2 database, there is an embedded WEB UI for general SQL queries
and table administation. To access this database administration interface, use a web
browser and point it to https://localhost:8082. The login screen will ask for a JDBC url
and a username and password. The defaults are:

jdbc url: jdbc:h2:file:data/bytesphere
username: bytesphere
password: bytesphere!

Database Rollups
Jaguar polls data and if using a database, will be storing LOTS of it. The system is
configured to automatically roll up data based on hourly and daily tables. There is 1 table
for each hour and poll period. These tables store RAW data. Then, there is 1 table created
for each day and poll period, and the RAW data is averaged and placed into this table
(1 datapoint for each hour). Then, there is a monthly table, where all daily data is again
rolled up and averaged and placed into the monthly table. This allows us to show you
quick snapshots of data over large periods of time for large numbers of datapoints. There
are a number of settings for rollups that control this behavior (defaults below):

data_daily_days_to_keep=60	 Number of months of rolled up data to store
data_hourly_days_to_keep=30	 Number of days of rolled up data to store
data_raw_days_to_keep=7		 Number of days of RAW data to keep
data_rollup_enabled=true 		 (should be true unless not using DB)

20	 |  SETUP AND CONFIGURATION

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

Jaguar Web Interface
Jaguar ships with a high-performance embedded WEB UI for reports and general system
and user administration. The embedded URL for access is http://localhost:8080. You
will be asked to create an admin login the first time it is run. The default username and
password used is admin/admin.

There is a configuration file for the web interface that can be found in the includes
directory (includes/config.php). This file can be modified to change the database settings,
timeouts, email settings, and a number of other parameters. If you make changes to this
file, then you must back it up and copy it back into place when updating the web UI.

The core underlying WEB technology is a Jetty Servlet container which will
automatically expand a WAR file from the /webapps directory. It will also update itself
automatically with the latest bytesphere WAR files, as they are released, as long as the
engine has access to the internet. You can create a customized UI by simply editing
the PHP files that come inside the WAR. You can also create your own WAR files, and
deploy them to remote engines by copying them to the webapps/web.war file. Once
present, they will automatically be expanded and run by the system.

You can also choose to use a different servlet container (i.e. JBOSS, Tomcat, etc.), on
a different machine, on which to deploy the WAR. There may be some customization
for your specific instance, if you need assistance please contact us @ 617-475-5209 or
support@oidview.com.

Polling Frequency
There are three different polling frequencies in the system, each are set in milliseconds:

FREQUENCY DESCRIPTION
Default Polling Frequency 5 minutes is the default (300000 ms)
Realtime Polling Frequency Anything under 30 seconds is considered “realtime”
Scheduled Polling Frequency Groups of monitors can be scheduled to poll at certain times

	 SETUP AND CONFIGURATION  |	 21

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

Each monitor can have one of these three polling settings, either individually or all at
the same time. By default Jaguar polls for historical data every 5 minutes. If you need to
increase that, then you can change the default polling frequency (for all monitors in the
system), by changing the global poller_period property, which is set in milliseconds.
Realtime polling frequency is changed per “monitor”, and can be set via the API or
UIs. Scheduled frequencies can be setup through the UI or through the engineconfig.
properties file. More information can be found in the properties section of this guide.

Polling Configuration
The polling configuration is the list of things the engine is going to poll each default
poll period. This is supported in both a text file (XML) format and in the database. If the
database is configured, the configuration will be stored there as well as in memory. The
default XML filename is monitor.cfg.xml and is located in the root installed directory
(i.e. /opt/monitorengine/monitor.cfg.xml). This file is read on startup, and can
be created/updated by the system when using the API command system.config.read. For
more information on this, please see the ConfigUpdate section of this document.

Polling Performance
Jaguar can be configured to poll a huge number of monitors and devices, on a single
server, depending on the network topology and specifications of the management
machine. Our performance testing was conducted in our own private performance lab,
using in-house SNMP simulators and just the SNMP poller-engine blade, polling hosts
and ethernet ports over a simple ethernet switch (1 hop). Machines running simulators
were DELL SC1435 blade servers, running Centos 5, each with a single Dual-Core
2Ghz CPU, and 8G RAM. Poller machine was a DELL 2900 PowerEdge server, running
Centos 5.0 with 2 Dual-Core 2Ghz CPUs, and 16G RAM.

Based on our internal testing, following (see Table PERF-1) are some recommended
settings based on network size, polling configuration, and machine requirements. Actual
settings may need to change based on network size, topology, devices and agents being
polled (speed and capability of agents), and the specifications of the management
machine designated as the poller running Jaguar.

22	 |  SETUP AND CONFIGURATION

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

Table PERF-1 - Recommended property settings for performance polling.

HOSTS MONITORS RAM CPU PROPERTY SETTINGS
100 5K 1G 1x2Ghz Default
1K 50K 4G 2x2Ghz max_agent_pdus_downshift_enabled=false

max_snmp_contexts_per_pool=50
max_snmp_context_threads=20
max_agent_simultaneous_request_pdus=40

10K 100K 8G 4x2Ghz max_agent_pdus_downshift_enabled=false
max_snmp_contexts_per_pool=500
max_snmp_context_threads=10
max_agent_simultaneous_request_pdus=10

100K 100K 16G 4x2Ghz max_agent_pdus_downshift_enabled=false
max_snmp_contexts_per_pool=2500
max_snmp_context_threads=2
max_agent_simultaneous_request_pdus=2

50 1M 16G 4x2Ghz max_agent_pdus_downshift_enabled=false
max_snmp_contexts_per_pool=10
max_snmp_context_threads=30
max_agent_simultaneous_request_pdus=60
snmp_pdu_retry_inter-
vals=100,150,250,500,1000,2000

	 SETUP AND CONFIGURATION  |	 23

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

Custom Poller schedules

Pollers run on a DEFAULT schedule and can be activated in REALTIME. Pollers also
can be scheduled to startup for a specific group of monitors at a specific time in the day
(CUSTOM). By default, all monitor items when created are assigned to group 0, and are
automatically assigned to the normal poll (30sec+) or realtime poll (1sec+) schedule by
their assigned poll frequency. To see the details on how to configure them, please see the
Properties section of the document. Here are some examples:

The following poller schedule is called “subsecond_am”
This will launch a 2 minute 250ms interval poller process at just before 9am every day
This will only process monitors that have been defined with a schedule group of 1

custom_scheduler_1_name=subsecond_am
custom_scheduler_1_group=1
custom_scheduler_1_params=,,8,59,0,0,250,480

The following poller schedule is called “subsecond_pm”
This will launch a 2 minute 250ms interval poller process at just before 5pm every day
This will only process monitors that have been defined with a schedule group of 1

custom_scheduler_2_name=subsecond_pm
custom_scheduler_2_group=1
custom_scheduler_2_params=,,16,59,0,0,250,480

The following poller schedule is called “hourly_ping”
This will launch a single ping every hour. This will only process monitors that have been
defined with a schedule group of 3

custom_scheduler_3_name=hourly_ping
custom_scheduler_3_group=3
custom_scheduler_3_params=,,,,,,3600000,0

24	 |  SETUP AND CONFIGURATION

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

Suggested Setup Configurations

Stand-alone NMS
To setup Jaguar as a stand-alone Network Management System, pick a computer that is
central to your network infrastructure (or at least has complete access to your network
devices). It will be installed on this computer. By default, the WEB-UI and database will
both be embedded. We recommend, for simplicity, keeping it this way.

MSP or Distributed Enterprise
Jaguar can be very useful for MSPs or very large distributed enterprises, as it can act as
a central or remote poller, send data to a 3rd party NMS, or just watch KPIs and alert via
email or trap when thresholds are crossed.

Single Local Poller

In this situation, it is very much like a stand-alone NMS. The MSP admin will have to
access it behind the firewall (either using LogMeIn, GoToAssist, VPN, or some other
remoting technology). If Jaguar is storing data, it will be stored internally using the high-
performance embedded database, and no settings or changes really need to be made. The
MSP can remote into the customer network, and then use the embedded WEB UI to log
in and perform administration. The notification email settings can be set so the MSP is
aware of issues occurring on the network.

Multiple Remote Pollers

Multiple engines can be installed geographically dispersed, in an unlimited number of
locations. Each engine needs to be assigned a different engine_id (set in the engineconfig.
properties file). If each remote poller is for another customer, each engine also needs to
have a different organization_id (set in the engineconfig.properties file). The database
can then be configured for each engine (also in the engineconfig.properties file) to send
collected data to a remote, central database (which needs to be accessible from all the
remote pollers). This database could be hosted online or be accessed through an always-
on VPN which is installed on the remote poller behind the customer’s firewall. The

	 SETUP AND CONFIGURATION  |	 25

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

administrative WEB UI may be accessed on a single engine or installed in a central
location (on the internet), using a Tomcat, JBOSS, or other type of web servlet container
instance. It must be configured as well to look at the central database. To do this, the
config.php file in the web.war distribution needs to be modified. More on this will be
explained in the Web UI Configuration section.

Integrated Data Collector (Service Providers)
For large service providers using a number of reporting and data collection frameworks,
Jaguar can be an ideal addition to the arsenal and help you to quickly get additional
monitoring and reporting online. It can bubble up a variety information and data to large
frameworks like CA eHealth and Spectrum, IBM Tivoli, BMC, EMC Smarts, Telcordia
Service Director, etc. The list goes on. Please contact us @ 617-475-5209 or support@
oidview.com for assistance with integration points and APIs.

OEM Data Collector (3rd Party Vendors)
For technology vendors looking to expand their monitoring capabilities, scalability, or
add an integrated NMS and/or EMS into their product portfolio, Jaguar’s white-label
OEM Engine solution can easily fill the void and become part of your branded solution.
Use all or just some of the plug and play components or engines. Please contact us @
617-475-5209 or support@oidview.com for assistance with integration points and APIs.

26	 |  PROPERTIES REFERENCE

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

System Properties

engineconfig.properties file
The engineconfig.properties file provides the main engine configuration and helps to
control how the MonitorEngine behaves. This is a simple text file using name=value
pairs, and is read fully by the MonitorEngine on startup. To list all the properties at
runtime, please see the API section of this document, and refer to the comand system.
properties.list.

DO NOT EDIT THIS FILE WHEN THE ENGINE IS RUNNING. Editing the file at
runtime will not cause the engine to re-read the properties. In addition, properties that
are set via the API at runtime will be written out to the file, potentially overwriting
any changes made manually while the system is running. To make changes during
runtime, please see the API section of this document, and refer to the command system.
properties.set.

PROPERTY NAME PROPERTY DESCRIPTION and EXAMPLES

allow_frequency_update Setting this allows monitor polling frequency to be
updated by the discover/merge process. By default this
is ‘false’, as one normally does not want discover to
override a user’s polling frequency setting. But, there
may be cases where the global polling frequency has
been changed, and it would be easiest to just have
everything that is discovered use the new polling
frequency. In this case, setting this to ‘true’ will simply
set all the discovered (and updated) monitors to the new
polling frequency.
allow_frequency_update=false

	 PROPERTIES REFERENCE  |	 27

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

PROPERTY NAME PROPERTY DESCRIPTION and EXAMPLES

custom_scheduler_{X}_group The group of monitors to poll for a custom poller
schedule. This is typically the group_id availabe in the
database. Monitor Items that are assigned to that group
will be put on the custom poll schedule. Those same
items will also be polled by the default schedule unless
the monitor item default poll frequency is set to -1. Valid
custom group schedule #s are greater than 1.
custom_scheduler_1_group=1

custom_scheduler_{X}_name The name for a custom poller schedule.
custom_scheduler_1_name=subsecond_am

custom_scheduler_{X}_params Parameters specify when the scheduler will start and
how often it will fire.

PARAMS = DATE_FIELD,DATE_VALUE,TIME_
HOUR,TIME_MINUTE,TIME_SECOND,TIME_
MILLISECOND,INTERVAL,REPEAT

DATE_FIELD is a field like HOUR_OF_DAY, DAY_OF_WEEK,
DAY_OF_MONTH, MONTH_OF_YEAR, etc.

DATE_VALUE would be the value of the date field

TIME_HOUR, TIME_MINUTE, TIME_SECOND, TIME_
MILLISECOND are just that.
Leave these null unless you are specifically setting those fields (i.e.
0,0,0,0 means start at midnight).

INTERVAL is the amount of time in milliseconds between
scheduled executions

REPEAT is the number of times to repeat this scheduled execution -
0 is forever

custom_scheduler_1_params=,,8,59,0,0,250,480

28	 |  PROPERTIES REFERENCE

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

PROPERTY NAME PROPERTY DESCRIPTION and EXAMPLES

custom_scheduler_count Turns On / Off custom poller schedules. Setting this
to zero (even if they are defined) shuts off custom
scheduling completely.
custom_scheduler_count=0

data_daily_days_to_keep Data rollup parameter specifying how many days of
DAILY averaged data to keep in the database (1 day
averaged data from HOURLY).
data_raw_days_to_keep=180

data_hourly_days_to_keep Data rollup parameter specifying how many days of
HOURLY polled data to keep in the database (60 minute
averaged data from RAW).
data_hourly_days_to_keep=30

data_keep_raw_bulkstats_files Delete all bulkstats files created (i.e. MySQL bulk stats).
Defaults to ‘true’. If ‘false’, then all bulkstats files
will be left on the disk and not cleaned up (good for
debugging or if an external process is downloading those
files for insertion to another system).
data_keep_raw_bulkstats_files=false

data_raw_days_to_keep Data rollup parameter specifying how many days of
RAW polled data to keep in the database (usually
5 minute data, depending on default poller period
configuration).
data_raw_days_to_keep=7

data_raw_hours_to_keep Data rollup parameter specifying how many hours
of RAW polled data to keep in the database (usually
5 minute data, depending on default poller period
configuration). Only use raw hours if you are NOT using
raw days.
data_raw_hours_to_keep=0

	 PROPERTIES REFERENCE  |	 29

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

PROPERTY NAME PROPERTY DESCRIPTION and EXAMPLES

data_rollup_enabled Data rollup parameter specifying whether or not the
database rollups are enabled (true by default).
data_rollup_enabled=true

data_rollup_include_min_max Include MIN/MAX in rollups
data_rollup_include_min_max=true

db_auto_tuning_enabled Allow automatic tuning of db based on config size
db_auto_tuning_enabled=false

db_debug_logging_enabled Database sql connection and statement logging
db_debug_logging_enabled=false

db_host Database parameter specifying the IP address of the host
running the database.
db_host=localhost

db_large_config_threshold The number of monitors at which point to cut over to
bulk stats loading, auto tuning, etc.
db_large_config_threshold=25000

db_name Database parameter specifying name of the database.
db_name=bytesphere

db_pass Database parameter specifying the login password
db_pass=bytesphere!

db_type Database initialization parameter specifying the type of data-
base. Valid values are:

db_type=none

db_type=h2

db_type=mysql

db_type=sqlserver

30	 |  PROPERTIES REFERENCE

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

PROPERTY NAME PROPERTY DESCRIPTION and EXAMPLES

db_user Database parameter specifying the login name
db_user=bytesphere

discover_allow_address_updates If IP addresses change in the network and device is
already being monitored using a different IP address,
setting this to ‘true’ will update the system to use
the new address. Set this to ‘false’ to disable update
behavior. Default is ‘false’ due to the common scenario
of multiple IPs on a single device. The first IP address
a device is discovered with will continue to be the
management address, unless the device is no longer
available at the original management address. Then,
updates will happen automatically regardless of the
setting here.
discover_allow_address_updates=false

discover_host_lookup_file The file to use for hostname lookup PRIOR to using
DNS lookups (if enabled). Leave blank to disable this
extra lookup mechanism.
discover_host_lookup_file=

discover_polling_disabled Configures discovery so that polling for that particular
monitor will be disabled when it is discovered. By
default, all monitors are automatically enabled for
polling when initially discovered and entered into the
system.
discover_polling_disabled=false

discover_scheduler_main_enabled Specifies whether scheduled discovery is enabled. Also
see discover_scheduler_main_params.
discover_scheduler_main_enabled=false

	 PROPERTIES REFERENCE  |	 31

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

PROPERTY NAME PROPERTY DESCRIPTION and EXAMPLES

discover_scheduler_main_params If auto-discover is enabled, this value specifies the
scheduler format. The format follows the same format as
the Poller Schedules.

PARAMS = DATE_FIELD,DATE_VALUE,TIME_HOUR,TIME_MINUTE,TIME_

SECOND,TIME_MILLISECOND,INTERVAL,REPEAT

Interval values are in milliseconds. The example below
shows auto-discovery being launched once a day at
7:30PM:
discover_scheduler_main_params=

,,19,30,0,0,86400000,0

discover_seed_type The discover seed type specifies how scheduled auto-
discovery will work.

disabled - do not do auto-discovery
auto - try to discover as much as possible without a seed
range - discover things in a specified range (e.g. 192.168.1-3.1-254)
seedfile - discover things specified in a separate seed file
config - only (re)discover things in the configuration

discover_seed_type=range

discover_seed_value The discover seed value (only valid with ‘range’ and
‘seedfile’. specifies the parameter for discovery

Example for a range value:

discover_seed_value=192.168.1.1-254

Example for a seedfile value:

discover_seed_value=/opt/discoverseeds.txt

discover_type_location The location of discover type definition files
discover_type_location=discover

32	 |  PROPERTIES REFERENCE

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

PROPERTY NAME PROPERTY DESCRIPTION and EXAMPLES

dynamic_poller_tuning_enabled Automatically tries to tune the poller based on
configuration size and network response times. Better to
do this manually, it can be a real resource hog.
dynamic_poller_tuning_enabled=false

engine_id The unique ID of the engine, default is 0. Each engine
must have it’s own ID set to a unique number if they
are writing to the same database. This is a user assigned
number (the admin must do it at install time), it is not
automatically assigned.
engine_id=0

engine_primary_ip The IP Address of the primary, active monitor engine

engine_primary_ip=192.168.1.15

engine_status The monitoring status for the engine (used with
failover). active means it will monitor and act as
primary. passive means it will be in backup mode,
polling the primary.
engine_status=active

engine_status=passive

event_autoclear_time The time that an event will take to automatically clear. If
the event has been in the system after this period of time,
it will clear by itself. Default is 1 day.
event_autoclear_time=86400000

event_autodelete_time The time that an event will take to automatically delete.
If the event has been in the system after this period of
time, it will delete itself. Default is 1 week.
event_autoclear_time=604800000

	 PROPERTIES REFERENCE  |	 33

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

PROPERTY NAME PROPERTY DESCRIPTION and EXAMPLES

event_dbstorage_disabled Allows for the disabling of event storage in the database.
Events (traps, syslogs, etc.) will be processed but not
stored in the database.
event_dbstorage_disabled=false

event_maint_frequency Sets the maintenance frequency for the Event Engine, in
minutes. The default is 60.
event_maint_frequency=60

event_max_storage_count Sets the max event count that will be stored (in memory
or the db), by the event engine. If the count gets higher
than this, maintenance will be triggered and excess
events (oldest first), will be removed.
event_max_storage_count=100000

exception_collapse_agent_thresh-
old_count

The number of identical exceptions for different
monitors on the same agent that will trigger collapse of
the events into 1 single event.
exception_collapse_agent_threshold_count=20

h2.bindAddress Sets the bind address for the H2 embedded database.
Leaving it empty will force the system to search for the
best physical bind address (not a VPN or virtual address)
h2.bindAddress=192.168.1.15

hostname_resolution_enabled Enables / Disables DNS lookup for Hostname resolution
hostname_resolution_enabled=true

34	 |  PROPERTIES REFERENCE

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

PROPERTY NAME PROPERTY DESCRIPTION and EXAMPLES

max_agent_pdus_downshift_en-
abled

If agent timeouts occur, this controls the behavior to
decrease the number of maximum pdus being sent out at
the same time. For example, if the max is set to 60, and
a timeout occurs, if this is set to ‘true’ then the max will
next be set to 30. If timeouts continue to occur, it will
again decrease the max value of simultaneous requests,
until either it gets to below 10 or timeouts do not occur
anymore.
max_agent_pdus_downshift_enabled=false

max_agent_simultaneous_re-
quest_pdus

The maximum number of requests that will be sent out
per agent (irregardless of protocol), at any one time.
max_agent_simultaneous_request_pdus=60

max_engines_per_pool The maximum number of engines to create per engine
pool. The controls all engine pools. Engines are created
dynamically as they are needed and retired to the pool
after use.
max_engines_per_pool=25

max_engines_per_pool The maximum number of engines to create per engine
pool. The controls all engine pools.
max_engines_per_pool=25

max_results_queue_size The maximum size of the results collector queue. This
can be helpful if for some reason the connection to the
database is temporarily disconnected, the results will
continue to be stored in the collector queue until the
connection is re-established.
max_results_queue_size=60

	 PROPERTIES REFERENCE  |	 35

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

PROPERTY NAME PROPERTY DESCRIPTION and EXAMPLES

max_snmp_context_threads The maximum number of threads per SNMP context.
This controls the number of simultaneous requests that
can be made against a single host at the same time.
max_snmp_context_threads=40

max_snmp_context_threads The maximum number of threads per SNMP context.
This controls the number of simultaneous requests that
can be made against a single host at the same time.
max_snmp_context_threads=40

max_snmp_contexts_per_pool The maximum number of SNMP contexts to create per
context pool. This controls the number of simultaneous
hosts that can be queried via SNMP at the same time.
max_snmp_contexts_per_pool=5

monitor_cfg_write_file_enabled Controls whether or not the polling configuration will be
written out to an XML file after configuration changes.
monitor_cfg_write_file_enabled=true

monitor_debug_level This parameter sets the amount of debugging to be
output to the log. Level 1 is the least. Level 10 is the
most. Default is ‘5’.
monitor_debug_level=5

monitor_debug_mode Default is ‘false’. Setting to ‘true’ will only turn on
debugging for monitors that are marked as ‘debug’ - this
way one can follow a single or set of monitors through
the system without having to see all the rest of the
debug.
monitor_debug_mode=false

monitor_keys_include_access_id Include Access ID in the monitor keys (internal)
monitor_keys_include_access_id=false

36	 |  PROPERTIES REFERENCE

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

PROPERTY NAME PROPERTY DESCRIPTION and EXAMPLES

monitor_max_timeouts_{ACCESS} The maximum number of timeouts allowed for
a particular access type before disabling access.
{ACCESS} can be any protocol the system supports
(e.g. SNMP, IPPORT, IPMI, WMI, etc.).

When a timeout occurs, a warning alarm is generated
and the poller will wait for the retry interval suggested
(see monitor_retry_interval_{ACCESS}) before it tries again. If
the engine still cannot get a response from the agent,
it doubles the retry interval, and tries again, and so on,
until the max_timeouts value is reached. If X successive
timeouts occur and the device is still reachable (i.e. it
can be pinged), but not queried with this access type,
another more severe alarm is generated and then access
is disabled for a specified sleep period (see monitor_retry_
sleep_ {ACCESS}).
monitor_max_timeouts_SNMP=10

monitor_retry_interval_{ACCESS} The base retry interval in milliseconds used when an
access type times out. The retry interval cannot exceed
120000 (2 minutes).
monitor_retry_interval_SNMP=5000

	 PROPERTIES REFERENCE  |	 37

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

PROPERTY NAME PROPERTY DESCRIPTION and EXAMPLES

monitor_retry_sleep_{ACCESS} The amount of time in milliseconds that polling for a
timed out agent will be suspended.

Max value for “monitor_retry_sleep” that can be
specified is 32000000.

Min value is -1, which indicates that the agent should
not be polled anymore for this access type (until the
system is restarted).

A value of 0 means that the timeout count just goes back
to 0 and the entire process starts over.

monitor_retry_sleep_SNMP=7200000

monitor_type_location The location of the monitor type definition files
monitor_type_location=monitor

monitorcfg_filename The filename of the monitor cfg file

monitorcfg_filename=monitorcfg.xml

monitorcfg_reader The default monitor config reader to use. The monitor
config reader is a group of reader classes that read
in configuration files. For example, if the reader is
reader_bytesphere_cfg then it itself must be defined
in the properties (see reader_bytesphere_cfg), and then
sub-properties based on this property must be defined.
For more information see the section on File Reader
Associations.
monitorcfg_reader=reader_bytesphere_cfg

monitorobjs_filename The filename of the monitor objects file
monitorobjs_filename=system/monitor-objects.

xml

38	 |  PROPERTIES REFERENCE

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

PROPERTY NAME PROPERTY DESCRIPTION and EXAMPLES

monitortypes_filename The filename of the monitor types file
monitortypes_filename=system/monitor-types.xml

net_snmp_procfix_enabled If set to ‘true’ and polling a NET-SNMP agent, if it
supports and has a configured PROC FIX setting, it will
issue a SET command to the agent to set prErrFix to 1
and commence the fix.

For more information on this NET-SNMP feature see:
http://www.net-snmp.org/docs/man/snmpd.conf.
html#lbAR

net_snmp_procfix_enabled=true

notifier_audio_url Tells the Notifier Engine to play an audio file whenever
there is an alert. The supported file formats are: “wav”,
“au” and “aiff”. Can be local or a URL.
notifier_audio_url=./my_alert.wav

notifier_audio_severity_trigger Triggers the Notifier Audio Playback (if so configured),
whenever an alert over a certain severity is generated.
notifier_audio_severity_trigger=critical

notifier_disabled Allows for the Notifier Engine to be disabled
notifier_disabled=false

notifier_email The default email address to send alerts. To disable
email alerts, leave blank
notifier_email=myaddress@mycompany.com

notifier_event_expire_period This is the amount of time that the Notifier will wait
before expiring an event completely... time is in
milliseconds. Specify 0 to never expire events.
notifier_event_expire_period=3600000

	 PROPERTIES REFERENCE  |	 39

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

PROPERTY NAME PROPERTY DESCRIPTION and EXAMPLES

notifier_event_timeout_period The default period for which the same event will be
ignored by the notifier (milliseconds)
notifier_event_timeout_period=300000

organization_id The default organization id for this engine. All monitors
and hosts by default will be saved to the organization set
here, unless otherwise specified. Default is 0.
organization_id=0

output_config_with_stats Determines whether or not polled configuration data
should be output with statistics.
output_config_with_stats=false

output_directory The directory that output files will be written to
output_directory=./output

output_engine_force_sqlfile Forces or suppresses SQL file output. If going directly
to DB, then the sql file by default will not be generated
because the engine is communicating directly with
the DB over a port (i.e. sql files will not be written
separately to disk). Set this to ‘true’ in order to generate
it. If running in debug mode, sql files will be generated
anyway. If suppression of sql files is desired, even in
debug mode, set to ‘false’.
output_engine_force_sqlfile=true

40	 |  PROPERTIES REFERENCE

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

PROPERTY NAME PROPERTY DESCRIPTION and EXAMPLES

output_engine_fqcn The java fully-qualified class name (FQCN) of the
output engine to be used by the monitor engine.

To output XML:
com.bytesphere.outputengine.XmlEngine

To output CSV:
com.bytesphere.outputengine.CsvEngine

To output SQL (and/or go to an SQL database):
com.bytesphere.outputengine.SqlEngine

output_engine_fqcn=com.bytesphere.

outputengine.SqlEngine

output_engine_fqcn_high_vol-
ume

The java fully-qualified class name (FQCN) of the
HIGH VOLUME output engine to be used.

output_engine_fqcn=com.bytesphere.

outputengine.MySQLEngine

output_header_column_names_
storage

Controls output for column names in the header of the
output files. ‘false’ will use the object_id for column
names (e.g. bytes_in). ‘true’ (the default) will use the
storage_id for column names (e.g. c1)
output_header_column_names_storage=true

ping_monitor_default_type The default PING type. Can be ‘none’, ‘auto’,
‘isreachable’, ‘icmp’, ‘tcp_connect’, ‘tcp_echo’, ‘udp’,
‘udp_echo’. The default is ‘auto’, which usually picks
‘icmp’ based on the situation.
ping_monitor_default_type=auto

	 PROPERTIES REFERENCE  |	 41

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

PROPERTY NAME PROPERTY DESCRIPTION and EXAMPLES

ping_monitor_enabled Enables/disables PING monitoring (‘true’/’false’). A
PING does not have to be ICMP.
ping_monitor_enabled=false

ping_monitor_icmp_enabled Enables/disables ICMP monitoring (‘true’/’false’). ICMP
monitoring means using ICMP as type of monitoring for
availability.
ping_monitor_icmp_enabled=true

ping_monitor_icmp_packet_
count

The number of ICMP packets to be sent to determine
RTT (rount trip time). It takes the average of the number
of packets time.
ping_monitor_icmp_packet_count=3

ping_monitor_icmp_timeout The number of milliseconds before an ICMP packet is
considered to be timed out.
ping_monitor_icmp_timeout=200

ping_monitor_mode Tells the engine whether to PING all the time (‘constant’
- the default), or just at the beginning of each poll
(‘poll’). Set to ‘off’ to disable completely. If set to
‘constant’, it will be used to determine host availability
and the event engine will be notified when a host goes
offline. If set to ‘poll’, then it will only poll those agents
that respond to the initial PING.
ping_monitor_mode=constant

ping_monitor_no_response_
count

The number of unsuccessful pings before calling a host
unreachable.
ping_monitor_no_response_count=3

ping_monitor_tcp_connect_ports The list of ports, comma separated, to use for TCP
connect PING monitoring
ping_monitor_tcp_connect_ports=23,80

42	 |  PROPERTIES REFERENCE

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

PROPERTY NAME PROPERTY DESCRIPTION and EXAMPLES

ping_monitor_tcp_connect_time-
out

The number of milliseconds for a TCP connection
attempt to be consifered a failure during the polling
process.
ping_monitor_tcp_connect_timeout=2000

ping_monitor_tcp_connect_time-
out_discover

The number of milliseconds for a TCP connection
attempt to be considered a failure during the service
discovery process.
ping_monitor_tcp_connect_timeout_

discover=1000

ping_monitor_wait_time The amount of time in milliseconds to wait between
PING jobs.
ping_monitor_wait_time=5000

poller_bind_addresses If the poller should use multiple NIC cards or needs
to bind to a specific card or IP address, enter those
values here. If more than one bind address is specified,
the system will bind to them in a round robin fashion.
Default, not set.
poller_bind_addresses=10.1.1.96,10.1.1.56

poller_blade_count The number of custom polling blades defined in the
configuration. Then, this number is used in the rest of the
poller_blade_** property settings.
poller_blade_count=2

	 PROPERTIES REFERENCE  |	 43

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

PROPERTY NAME PROPERTY DESCRIPTION and EXAMPLES

poller_blade_X_class The java fully-qualified class name (FQCN) of the poller
blade being defined. The pollerengine’s blade classloader
looks for this FQCN and loads it dynamically at runtime.
poller_blade_1_class=com.bytesphere.

pollerblades.PING

poller_blade_2_class=com.bytesphere.

pollerblades.SNMP

poller_blade_X_type The access type for this particular poller blade. The X
represents the number of the blade definition. The value
for the variable is the access-type itself.
poller_blade_1_type=PING

poller_blade_2_type=SNMP

poller_counters_zero_nega-
tive_deltas

This prevents aberrant counter behavior from skewing
data if certain deltas come back negative. When set to
true, those values are simply inserted as zero.
poller_counters_zero_negative_deltas=false

poller_dispatch_max_monitors Max number of monitors to dispatch per poller instance
poller_dispatch_max_monitors=100000

poller_div0_null_values The way to handle results with division by zero.
Setting to false sets the result to 0 (false)
Setting to true sets the result to null
poller_div0_null_values=false

poller_output_normalized_values Should the expression engine pre-normalize values
based on the defined storage_type in the monitor-types.
xml file for this object?
poller_output_normalized_values=false

44	 |  PROPERTIES REFERENCE

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

PROPERTY NAME PROPERTY DESCRIPTION and EXAMPLES

poller_period The default poll period between polls in milliseconds.
all monitoritems will be polled at this frequency
unless otherwise specified.
poller_period=300000

poller_period_rae_launch_cutoff The max length of the poll period before Results
Analysis Engine (RAE) is launched. By default it waits
up to 90% of the defined poller period.
poller_period_rae_launch_cutoff=270000

poller_period_realtime_cutoff Any monitored item with a frequency of LESS than
this will automatically be added to the real-time poller
queue.
poller_period_realtime_cutoff=30000

poller_period_realtime_default The realtime default polling period between polls in
milliseconds.
poller_period_realtime_default=10000

poller_period_realtime_rela-
tion_max

The max number of relations allowed to set to realtime
polling when setting realtime frequencies for relations
automatically. If the relation count is higher than this
do not allow realtime for a device (i.e. a router and it’s
relations).
poller_period_realtime_relations_max=1000

poller_timeouts_autoreset_in-
terval

Implement autoreset of all agent timeouts in
milliseconds. Setting this resets all agents that may have
timed out and had polling turned off every {interval}
milliseconds. Polling will be attempted again after this
interval, globally.
poller_timeouts_autoreset_interval=360000

	 PROPERTIES REFERENCE  |	 45

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

PROPERTY NAME PROPERTY DESCRIPTION and EXAMPLES

poller_zero_null_values Substitutes 0 for null values. Default value should be
true. This allows for evaluations of complex expressions
if certain values are missing and could not be collected
poller_zero_null_values=true

port_monitoring_enabled Enables / Disables service port discovery and
monitoring. Service monitoring will use TCP
connections to talk to well known services to ensure
that they are still running and responding to requests.
This function does not work well on Windows operating
systems, but works fine on Linux. It is disabled by
default.
port_monitoring_enabled=false

reader_bytesphere_cfg The reader that scans the monitor.cfg.xml file on
startup (or on an API call), that populates the polling
configuration. To extend the reading capability, put in
the custom classname here and make sure the jar is in
the classpath.
reader_bytesphere_cfg=com.bytesphere.reader.

ByteSphereCfgReader

reader_bytesphere_cfg_monitor The reader that scans all the monitor xml files in the
monitor directory, on startup (or on an API call), that
populates the monitor polling definitions in the engine’s
memory and db. To extend the reading capability, put in
the custom classname here and make sure the jar is in
the classpath.
reader_bytesphere_cfg=com.bytesphere.reader.

MonitorFileReader

46	 |  PROPERTIES REFERENCE

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

PROPERTY NAME PROPERTY DESCRIPTION and EXAMPLES

reader_bytesphere_cfg_objects The reader that scans the monitor-objects.xml file on
startup (or on an API call), that populates the monitor
object definitions in the engine’s memory and db.
To extend the reading capability, put in the custom
classname here and make sure the jar is in the classpath.
reader_bytesphere_cfg=com.bytesphere.reader.

ObjectFileReader

reader_bytesphere_cfg_type The reader that scans the monitor-types.xml file on
startup (or on an API call), that populates the monitor
type definitions in the engine’s memory and db.
To extend the reading capability, put in the custom
classname here and make sure the jar is in the classpath.
reader_bytesphere_cfg=com.bytesphere.reader.

MonitorTypeFileReader

smtp_password The SMTP password to use for logging into the SMTP server

smtp_password=password

smtp_server The IP address (or hostname) of the SMTP server to send
emails through

smtp_server=192.168.100.45

smtp_username The SMTP username setting for the SMTP server

smtp_username=username

snmp_community_read The SNMPv1/v2c read community string to use for
discovery and/or polling
snmp_community_read=public

snmp_community_write The read and write SNMPv1/v2c write community string
to use for discovery and/or polling
snmp_community_write=private

	 PROPERTIES REFERENCE  |	 47

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

PROPERTY NAME PROPERTY DESCRIPTION and EXAMPLES

snmp_discover_allowed_vendors Allows the SNMP discovery process to filter discovery
only to certain allowed, pre-defined vendors by
specifying allowed enterprise numbers. This filtering
involves querying the system table and looking at sysOid
to determine which vendor is being discovered. Default
is set to nothing - so all vendors will be discovered. If
snmp_discover_allowed_vendors=9,141

snmp_discover_ports The UDP ports to use for SNMP discovery. To specify
more than one port, use comma delimeter (e.g.: 161,
5000, 6000). Default is 161.
snmp_discover_ports=161

snmp_error_suppress_no_such_
name

Suppresses SNMP NO_SUCH_NAME errors.
snmp_error_suppress_no_such_name=false

snmp_force_getbulk If set to ‘true’, SNMP discovery and polling will always
use GETBULK instead of GETNEXT requests for
agents that do not support GETNEXT. Default is ‘false’.
snmp_force_getbulk=false

snmp_max_vars_per_pdu Defines the maximum number of variables to be put
in a PDU. This value has a huge effect on polling
performance. If set too high, it can break some SNMP
agent implementations or cause a TOO BIG or TOO
MANY error, which can affect performance. If set
too low, it can also increase the number of requests
that have to be sent and processed and also can lower
performance. The default is ‘32’.
snmp_max_vars_per_pdu=32

48	 |  PROPERTIES REFERENCE

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

PROPERTY NAME PROPERTY DESCRIPTION and EXAMPLES

snmp_pdu_retry_intervals Defines the SNMP PDU retry intervals in milliseconds.
e.g. 250,500,1000,2000 defines 4 retries at different
timeout intervals. If the PDU times out after 250ms, then
it will try again and wait 500ms. If it still times out after
500ms, it will try again at 1000ms, and so forth.
snmp_pdu_retry_intervals=250,500,1000,2000

syslog_disabled Enables / Disables the Syslog Engine. If disabled, the
engine cannot receive syslog notifications.
syslog_disabled=false

thread_prio_api Sets the Thread Priority of the API process. Valid values
are 1-10 with 10 being the maximum.
thread_prio_api=5

thread_prio_discover Sets the Thread Priority of the discover process. Valid
values are 1-10 with 10 being the maximum.
thread_prio_discover=5

thread_prio_rollup Sets the Thread Priority of the rollup process. Valid
values are 1-10 with 10 being the maximum.
thread_prio_rollup=5

timezone The timezone which the engine resides. Default is 0
(GMT).
timezone=0

trap_host The host to send SNMP Traps
trap_host=192.168.100.4

trap_host_port The port to send SNMP Traps to
trap_host_port=162

trap_receive_port The port to receive SNMP Traps on
trap_receive_port=162

	 PROPERTIES REFERENCE  |	 49

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

PROPERTY NAME PROPERTY DESCRIPTION and EXAMPLES

trapengine_disabled Enables / Disables the Trap Manager Engine. If disabled
then the engine cannot receive traps.
trapengine_disabled=false

webserver_disabled Enables / Disables the embedded WEB UI
webserver_disabled=false

webserver_port The TCP port the webserver (WEB HTTP service)
listens on
webserver_port=8080

webservice_port The TCP port the webservice (API service) listens on
webservice_port=1970

50	 |  API REFERENCE

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

API

MonitorEngine has a built in webservice interface that can be used for administration.
Almost everything can be done via the API. The UIs also use the same webservice
interface to communicate with the system. The API runs on port 1970 by default. To
change this port, please see the PROPERITES section of this document and refer to the
‘webservice_port’ property.

To see an example of the WSDL of the running service, use the following command on
the local system: http://localhost:1970/XmlApi/XmlApiService?wsdl

There is also a command line tool supplied for all operating systems during the install
process, called xmlApiClient. The command line structure takes seven parameters:

1.	 operation (required) – the specific operation to be performed (“-o”)
2.	 object – the id or name of the object on which to perform the operation (“-i”)
3.	 value – the parameter or value to be set (“-v”)
4.	 address - the address of the service (defaults to localhost) (“-a”)
5.	 username - the username to authenticate with (defaults to ‘bytesphere’) (“-u”)
6.	 password - the password to authenticate with (defaults to ‘bytesphere’) (“-p”)
7.	 wsdl - the wsdl file to use (defaults to the local wsdl file) (“-w”)

Not all parameters are required for all commands, but the -o (operation) parameter is
required. For example, on the local machine, the client command is called like so:

xmlApiClient -o {operation} -i {object(s)} -v {value}

For example, to check whether or not a remote system is alive, use the “-a” parameter:

xmlApiClient –o system.alive –a http://{remoteIP}:1970/XmlApi/XmlApiService

http://localhost:1970/XmlApi/XmlApiService?wsdl
http://remoteIP:1970/XmlApi/XmlApiService

	 API REFERENCE  |	 51

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

API Response Codes
Most of the time, the API responds with an error code and then the result. For example,
the response to “system.alive” should be “0|OK”. The first number is the API response
code, and the rest of the response is either the response itself or a descriptive string of the
code or error. At other times but only in special circumstances (i.e. report.results.get), the
response will be a very large string with no error code.

CODE DESCRIPTION
0 OK
1 Operation does not exist
2 Exception Occurred
3 Monitor does not exist
4 Agent does not exist
5 Monitor could not be deleted
6 Could not get required dispatcher
7 Could not set frequency
8 Monitor ID not specified
9 Agent ID not specified
10 Operation failed
11 No such monitor type exists
12 No such access type exists
13 Operation not allowed
14 Disabled
15 Job ID not specified
16 No jobs exist

52	 |  API REFERENCE

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

API Operations List
Following is a full list of all the operations available via the API.

OPERATION NAME OPERATION DESCRIPTION and EXAMPLES

access.community.get Retrieves the SNMP community string for a particular access
type. Retrieval requires the access_id, please see the database
schema section for more information.
-o access.community.get -i {access_id}

access.community.set Sets the SNMP community string for a particular access type.
Requires the access_id, please see the database schema section
for more information.
-o access.community.set -i {access_id} -v

{community_string}

agent.config.reset Resets all timeout values for the entire agent configuration.
-o agent.config.reset

agent.delete Deletes a specific agent from the agent configuration.
-o agent.delete -i {agent_id}

agent.enabled.set Enables / Disables a specific agent in the agent configuration.
Disabling an agent turns off polling and it will not be turned
back on until manually re-enabled, even on discovery (in
effect, this is the same as “retiring” an agent.
-o agent.enabled.set -i {agent_id} -v false

agent.frequency.set Sets the polling frequency for ALL monitors belonging to a
specific agent in the agent configuration.
-o agent.frequency.set -i {agent_id} -v 60000

agent.organization.get Gets the organization ID for a specific agent in the agent
configuration.
-o agent.organization.get -i {agent_id}

	 API REFERENCE  |	 53

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

OPERATION NAME OPERATION DESCRIPTION and EXAMPLES

agent.organization.set Sets the organization ID for a specific agent in the agent
configuration.
-o agent.organization.get -i {agent_id} -v

{organization_id}

eventmgr.{facility}.ack Ack a particular event from the EVENT_TYPE {facility}
specified. Valid facilities are currently ‘trap’ or ‘syslog’. For a
full list , please see the MonitorConsts. EVENT_TYPE Enum
Constant, in the CONSTANTS section of this document.

The ‘event_id’ to be specified must be the id of the actual
event generated by {facility}. For example, if it’s ‘trap’, then
the trap_id must be specified. If it’s ‘syslog’, then the syslog_
id must be specified.

The rest of the ack, clear, and unack operations for eventmgr
all follow suit.

-o eventmgr.trap.ack -i {event_id}

eventmgr.{facility}.ack_n Ack one or more events from the specified facility.
-o eventmgr.trap.ack_n -i {event_id1,event_id2}

eventmgr.{facility}.ackall Ack all events from the specified facility.
-o eventmgr.trap.ackall

eventmgr.{facility}.clear Clear an event from the specified facility.
-o eventmgr.syslog.clear -i {event_id}

eventmgr.{facility}.clear_n Clear one or more events from the specified facility.
-o eventmgr.syslog.clear -i {event_id1,event_id2}

eventmgr.{facility}.clearall Clear all events from the specified facility.
-o eventmgr.syslog.clearall

54	 |  API REFERENCE

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

OPERATION NAME OPERATION DESCRIPTION and EXAMPLES

eventmgr.{facility}.unack UnAck an event from the specified facility.
-o eventmgr.trap.unack -i {event_id}

eventmgr.{facility}.unack_n UnAck one or more events from the specified facility.
-o eventmgr.trap.unack_n -i {event_id1,event_id2}

eventmgr.{facility}.unackall UnAck all events from the specified facility.
-o eventmgr.trap.unackall

mibwalker.walk Performs an SNMP MIBWalk on a target agent. All the
parameters are specified in the -v switch.

-req <request> send request to agent. (0=get_bulk,1=get_next)
-v 1|2c|3 SNMP version
-ip <hostaddress> IP Address of Host
-a <outputfile> File to Append to
-f <outputfile> File to Output
-o <targetOid> OIDs to Target
-p <port> SNMP Port
-m <max_repetitions> Maximum number of repetitions
-r <attempts> Number of retries
-t <secs> SNMP Timeout
-forceGB Force GetBulkRequest, do not walk
-hc <mode> STRING output (0 = hex, 1 = ascii, 2 = text)
-c <community> SNMP Community (SNMPv1/v2c only)
-u <username> Username (required) (SNMPv3 only)
-E <engineid> Context Engine ID (SNMPv3 only)
-n <name> Context Name (SNMPv3 only)
-ap <authproto> Authentication protocol <md5|sha> (SNMPv3 only)
-A <password> Authentication password (SNMPv3 only)

-X <password> Privacy password (SNMPv3 only)

-o mibwalker.walk -v “ip={address},v 2c,

o=1.3.6.1.2.1.2.2.1.2“

	 API REFERENCE  |	 55

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

OPERATION NAME OPERATION DESCRIPTION and EXAMPLES

monitor.config.reset Resets all the monitor configuration polling states. Only use
when directed by technical support.
-o monitor.config.reset

monitor.delete Deletes a particular monitor from the configuration (both in
memory and the DB). Either the monitor ID or the NAME can
be used.
-o monitor.delete -i {monitor_id | monitor_name}

monitor.enabled.get Gets the enabled state of a particular monitor. Either the
monitor ID or the monitor NAME can be used.
-o monitor.enabled.get -i {monitor_id}

monitor.enabled.set Sets the enabled state of a particular monitor. Either the
monitor ID or the NAME can be used.
-o monitor.enabled.get -i {monitor_id} -v true

monitor.frequency.get Gets the frequency of a particular monitor. Either the monitor
ID or the NAME can be used.
-o monitor.frequency.get -i {monitor_id}

monitor.frequency.set Sets the polling frequency of a particular monitor. Either the
monitor ID or the NAME can be used. Specify milliseconds.
-o monitor.frequency.set -i {monitor_id} -v 60000

monitor.organization.get Gets the organization ID of a particular monitor. Either the
monitor ID or the NAME can be used.
-o monitor.organization.get -i {monitor_id}

monitor.organization.set Sets the organization of a particular monitor. Either the
monitor ID or the NAME can be used.
-o monitor.organization.set -i {monitor_id} -v 2

56	 |  API REFERENCE

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

OPERATION NAME OPERATION DESCRIPTION and EXAMPLES

monitor.realtime.get Gets the realtime frequency of a particular monitor. Either the
monitor ID or the NAME can be used.
-o monitor.realtime.get -i {monitor_id}

monitor.realtime.set Sets the realtime frequency of a particular monitor. Either the
monitor ID or the NAME can be used. Specify milliseconds.
-o monitor.realtime.set -i {monitor_id} -v 15000

monitor.states.list (D) Gets the summary of states for all monitors
-o monitor.states.list

monitor.stats.get Gets the last polled statistic for a particular monitor.
-o monitor.stats.get -i {monitor_id} -v {stat_id}

monitor.type.get Returns the monitor type for a particular monitor
-o monitor.type.get -i {monitor_id}

monitor.type.set Sets the monitor type for a particular monitor
-o monitor.type.get -i {monitor_id} -v {type}

notifier.events.ack Acknowledges an event. Event_id is the database id of the
event.
-o notifier.events.ack -i {event_id}

notifier.events.ack_n Acknowledges one or more events. Use comma to separate
event ids.
-o notifier.events.ack_n -i {event_id1,event_id2}

notifier.events.ackall Acknowledges all events.
-o notifier.events.ackall

	 API REFERENCE  |	 57

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

OPERATION NAME OPERATION DESCRIPTION and EXAMPLES

notifier.events.add Adds an event. Use when wanting to trigger an externally
generated Notifier Event or Exception that is not triggered by
the engine. Takes the following parameters:

object: target object (could be monitor name, IP address, etc.)
event_type: type of event (see schema NotifierEventType)
severity: severity of event (see schema NotificationSeverityType)
message: text message describing the event
exception_key: if triggered by an exception, the key of the exception

-o notifier.events.add -v “object={object},event_

type=THRESHOLD_OUTOFRANGE,severity=CRITICAL,messag

e=’Threshold exceeded for Errors’”

notifier.events.clear Clears an event in the notifier (in memory and database).
-o notifier.events.clear -i {event_id}

notifier.events.clear_n Clears one or more events in the notifier (in memory and
database).
-o notifier.events.clear_n -i {event_id1,event_id2}

notifier.events.clearall Clears ALL events in the notifier (in memory and database).
-o notifier.events.clearall

58	 |  API REFERENCE

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

OPERATION NAME OPERATION DESCRIPTION and EXAMPLES

notifier.events.lookup Returns all matching events in the notifier by either monitor
id or exception key. This allows the caller to figure out if there
are any events directly generated by a particular monitor OR if
there are any events that match a specific triggered exception.
Valid parameters are ‘monitor_id’, ‘exception_key’, or
‘mid_ekey’ (for both monitor id and exception key. If using
the latter method, the string passed in should use the pipe
delimeter between the monitor id and exception key (e.g.
10683|bytes_total_100.1.0)

-o notifier.events.lookup -v monitor_id=10683

notifier.events.unack UnAck an event in the notifier (in memory and database).
-o notifier.events.unack -i {event_id}

notifier.events.unack_n UnAck one or more events in the notifier (in memory and
database).
-o notifier.events.unack_n -i {event_id1,event_id2}

notifier.events.unackall UnAcks ALL events in the notifier (in memory and database).
-o notifier.events.unackall

notifier.mailserver.test Tests the a SMTP mail server with the specified parameters.
The test does not actually send an e-mail but it does connect to
the server and login. Parameters:

-smtp_server {ipaddress | hostname} - the server to test
-smtp_username {username} - the username to login with
-smtp_password {password} - the password to use for login

-o notifier.mailserver.test -v smtp_

server={hostname},smtp_username={username},smtp_

password={password}

	 API REFERENCE  |	 59

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

OPERATION NAME OPERATION DESCRIPTION and EXAMPLES

notifier.users.add Adds a user to the notifier users list. Must pass the username
and at least 1 parameter. Parameters include ‘email_address’
(in order to get email notifications), ‘trap_address’ (in order to
send a SNMP TRAP), ‘database’ to log to database.
-o notifier.users.add -i {username} -v {email_

address={email_address},trap_address={trap_

address},database=0}

notifier.users.remove Removes a user from the notifier users list. Must pass the
username.
-o notifier.users.remove -i {username}

report.results.clear Clears the results of a report from cache. All report results are
stored in cache for a period of 1 poll period longer than the
timeframe of the report (running a report over the same time
period does not generate a new report - it returns the report
that has already been generated).

-o report.results.clear -i {report_id}

report.results.get Gets the results of a report
-o report.results.get -i {report_id}

report.schedule.add Schedules a report, and returns a report_id. The ‘report.
results.get’ must be called with the returned report_id in order
to retrieve the results. Object must be the report name and
the parameters passed include a set of arguments describing
the report. For more information, please see the REPORT
ENGINE section of this document.

-o report.schedule.add -i {report_name} -v {args}

report.schedule.cancel Cancels a scheduled or running report.
-o report.schedule.cancel -i {report_id}

60	 |  API REFERENCE

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

OPERATION NAME OPERATION DESCRIPTION and EXAMPLES

system.accesstypes.updated Notifies the system that the accesstypes have been updated
and the engine will reload them from the database.
-o system.accesstypes.updated

system.alive Tells if system is alive and well, responding with an “0|OK”.
-o system.alive

system.component.details Gets the detailed state of a specific component of the engine.
Only 1 component can be specified at a time (or ALL is OK as
well). Please see components above.
-o system.component.state -v DE

system.component.state Gets the overall state of a specific component of the engine.
Only 1 component can be specified at a time (or ALL is OK as
well).

ALL = ALL
MRM = Monitor Results Manager
PE = Poller Engine
DE = Discover Engine
OE = Output Engine
NE = Notifier Engine
RAE = Results Analysis Engine
SP = Symbol Processor
PM = Ping Monitor
PB_SNMP = Poller Blade (SNMP)

-o system.component.state -v ALL

system.config.read Tells the system to read in a configuration file. Configuration
will be merged with the running configuration. If no file is
specified, the default will be used ‘monitor.cfg.xml’.
-o system.config.read -v {file}

system.config.write Tells the system to write the running configuration out to a
configuration file. All data will be written to ‘monitor.cfg.xml’
by default, unless a file is specified.
-o system.config.write -v {file}

	 API REFERENCE  |	 61

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

OPERATION NAME OPERATION DESCRIPTION and EXAMPLES

system.debug.database Only run when instructed by support. Launches a database
debugging session, but locks out the engine from making
changes to it while the session is running. This should not be
performed on a production machine, as the monitorengine
must be shut down in order to reset everything. The database
can be queried normally while the engine runs, for more
information please see the DATABASE chapter.
-o system.debug.database

system.discover Schedules a discovery and adds it to the queue. If nothing is
in the queue, it will execute immediately. Arguments to be
specified in name=value pairs, comma separated.

Arguments:

access_id - use a specific access_id for the access parameters
auth_password - the authentication password
auth_proto - the authentication protocol (NONE, MD5, SHA)
context - the SNMPv3 context name
community - the SNMP community string (default)
community_read - the SNMP community string (read-only)
community_write - the SNMP community string (read-write)
host - specifies a single host to process
jobid - when set to 1, the discover jobid is returned.
priv_proto - the privacy protocol (NONE, CBC_DES)
priv_password - the privacy password
port - port to query on (SNMP uses 161 by default)
profile_id - execute a pre-defined discover profile
range - specifies the range of IP addresses to process	
type - type of discover (i.e. snmp, icmp, ipmi, etc.)
username - the username for discovery
version - version of SNMP to use (SNMP only)

-o system.discover -v {arg1=value1,arg2=value2}

62	 |  API REFERENCE

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

OPERATION NAME OPERATION DESCRIPTION and EXAMPLES

system.discoverstats Returns realtime statistics for the discover process.
-o system.discoverstats

system.dispatchers.start Starts the poller dispatchers (i.e. enables polling).
-o system.dispatchers.start

system.dispatchers.stop Stops the poller dispatchers (i.e. disables polling).
-o system.dispatchers.stop

system.exceptions.add Adds an exception definition to the system. Arguments to be
specified in name=value pairs, comma separated. For more
information, please see the EXCEPTIONS chapter in this
document.

Arguments:

action - notify, watch_normal, watch_realtime
compare_object - baseline_recent, baseline_running, value_current,
value_last, value_max, value_min, value_sum
compare_type - less_than, greater_than, range, contains, equal, notequal
compare_value - the value to compare to
exception_text - the description text of the exception
monitor_id - the ID of the monitor to specifically create this exception for
monitor_type - the monitor type for this exception
object_id - object to watch
reset_count - number of times polled value must not trip the exception
realtime_poll_period - frequency of realtime polling action in ms
severity_id - the severity of the exception
trip_count - number of times value must trip exception to trigger action

-o system.exceptions.add -v {arg1=value1,arg2=valu

e2,arg3=value3,arg4=value4}

	 API REFERENCE  |	 63

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

OPERATION NAME OPERATION DESCRIPTION and EXAMPLES

system.exceptions.delete Delete the exception definition including all events derived by
a matching exception from the system, by either the monitor_
id or the exception_key.
-o system.exceptions.delete -v exception_

key={exception_key}

system.exceptions.updated Tells the system to reload exception definitions for all
exceptions based on a specific monitor_type (‘type’) or a
specific exception db_id (‘id’).
-o system.exceptions.updated -v type={type}

system.gc Forces garbage collection.
-o system.gc

system.groups.updated Tells the system to re-read the groups from the database.
-o system.groups.updated

system.jobs.cancel Cancels a running or queued job
-o system.jobs.cancel -i {job_id}

system.jobs.list Lists the current jobs running and queued.
-o system.jobs.list

system.license.info Displays the current license information
-o system.license.info

system.license.load Attempts to load the current license(s)
-o system.license.load

system.license.usage Displays the current license usage
-o system.license.usage

64	 |  API REFERENCE

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

OPERATION NAME OPERATION DESCRIPTION and EXAMPLES

system.logging.component Specifies which system component to enable logging for.
Unlike the ‘state’ command, multiple components can be
specified here.

ALL = ALL
MRM = Monitor Results Manager
PE = Poller Engine
DE = Discover Engine
OE = Output Engine
NE = Notifier Engine
RAE = Results Analysis Engine
SP = Symbol Processor
PM = Ping Monitor
PB_SNMP = Poller Blade (SNMP)

-o system.logging.component -v DE,RAE,SP

system.logging.database Enables/Disables detailed debugging information in the
database (e.g. SQL queries, reponses, etc.)
-o system.logging.database -v true

system.logging.level Sets the logging level (1-10). 1 least, 10 is most.
-o system.logging.level -v 5

system.logging.priority Sets the logging priority. INFO is the default. Valid values are
ERROR, INFO, WARN, DEBUG.
-o system.logging.priority -v DEBUG

system.pollerblades.reset Resets the poller blades. Only use with tech support.
-o system.pollerblades.reset

system.pollerstats Returns realtime statistics for the polling process.
-o system.pollerstats

system.properties.delete Deletes a system property
-o system.properties.delete -i {property_name}

system.properties.get Returns the property value for the property requested.
-o system.properties.get -i {property_name}

	 API REFERENCE  |	 65

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

OPERATION NAME OPERATION DESCRIPTION and EXAMPLES

system.properties.list Lists all the system properties and their values
-o system.properties.list

system.properties.rename Renames a system property
-o system.properties.rename -i {old_property_

name,new_property_name}

system.properties.set Set a property value for the property specified.
-o system.properties.set -i {property_name} -v

“{property value}”

system.properties.write Writes the property values out to the engineconfig.properties
property file.
-o system.properties.write

system.relations.reset Recalculates all system relations.
-o system.relations.reset

system.shutdown Shuts down the system.
-o system.shutdown

system.status Displays the current system status
-o system.status

system.threads.list Displays all threads in use and their states
-o system.threads.list

system.threads.summary Displays a summary of all threads in use and states
-o system.threads.summary

system.traplisteners.start Starts the Trap Manager Listeners
-o system.traplisteners.start

system.traplisteners.stop Stops the Trap Manager Listeners
-o system.traplisteners.stop

66	 |  API REFERENCE

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

OPERATION NAME OPERATION DESCRIPTION and EXAMPLES

system.trapstats Displays the statistics for Trap Manager Service
-o system.trapstats

system.types.reset Resets the Monitor Types and re-reads all currently known
types into the system. By default does not read newly added
types into the system.
-o system.types.reset

system.version Returns the engine version.
-o system.version

system.version.web Returns the web-engine version, if running
-o system.version.web

system.webserver.restart Restarts the webserver.
-o system.webserver.restart

trapmgr.filters.deleted Tells Trap Manager Service (TMS) that a specific filter was
deleted. TMS will delete that filter from the db and memory
and remove it from the processing trees.
-o trapmgr.filters.deleted -i {filter_id}

trapmgr.filters.read Tells Trap Manager Service (TMS) to read a trap-filters file. If
no file is specified, it will default to the system file.
-o trapmgr.filters.read -i {filter_file}

trapmgr.filters.updated Tells Trap Manager Service (TMS) that a specific filter was
updated. TMS will update that filter in the db and memory and
consequently update the processing trees.
-o trapmgr.filters.updated -i {filter_id}

	 API REFERENCE  |	 67

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

Common API examples

Delete an agent:
xmlApiClient –o agent.delete –i <agent-id>

Delete a monitor:
xmlApiClient –o monitor.delete –i <monitor-id>

Get the monitor frequency:
xmlApiClient –o monitor.frequency.get –i <monitor-id>

Set the monitor frequency to 30 seconds:
xmlApiClient –o monitor.frequency.set –i <monitor-id> -v 30000

Get the monitor enabled status:
xmlApiClient –o monitor.enabled.get –i <monitor-id>

Set the monitor enabled status to false:
xmlApiClient –o monitor.enabled.set –i <monitor-id> -v false

Launch discover with a specific range:
xmlApiClient –o system.discover -v range=192.168.1.1-254

Launch discover with a specific range and different SNMP community string:
xmlApiClient –o system.discover -v range=192.168.1.1-254,community=test

Launch discover for a specific IP and port:
xmlApiClient –o system.discover -v range=192.168.1.80,port=5000

Set the system parameter snmp_community_string to private
xmlApiClient –o system.config.set –i snmp_community_string -v private

Add a Notifier user to the system and specify email address:
xmlApiClient –o notifier.users.add –i <username> -v email_
address=<email>

mailto:email=nick@hotmail.com
mailto:email=nick@hotmail.com

68	 |  API REFERENCE

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

Update notifier user in the system specifying email and trap IP addresses:
xmlApiClient –o notifier.users.add –i <username> -v email_
address=<email>, trap_address=<trap-ip-address>

Acknowledge an event in the system:
xmlApiClient –o notifier.events.ack –i <event_id>

Clear an event in the system:
xmlApiClient –o notifier.events.clear –i <event_id>

Update exceptions in the system for the snmp-mib2-if monitor-type:
xmlApiClient.exe -o system.exceptions.updated -i type -v snmp-mib2-if

Update a community string:
xmlApiClient –o access.community.set –i <access_id> -v read_community/
write_community

	 EXTENDING THE ENGINE WITH META-DATA  |	 69

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

Monitor Configuration

MonitorEngine needs to be told which things to monitor, and how to monitor them. This
section will explain how to update the system with the set of things to be monitored, as
well as how to define custom monitoring types.

ConfigUpdate File
To tell MonitorEngine what to monitor, a configuration update file must be created.
The default filename for the configuration update file is monitor.cfg.xml.

As this is an XML file, we have included a schema describing the structure. The schema
describing the actual format can be found in the ‘system’ subdirectory from the install
location. The default locations are listed below.

Linux: “./system/cConfigUpdate.xsd”
Windows: “.\system\cConfigUpdate.xsd”

The configuration update file has a basic structure like this:

<ConfigUpdate>
	 <agentConfig>
		 <agent_ip/>
	 </agentConfig>
	 <accessConfig>
		 <access_type/>
	 </accessConfig>
	 <monitorConfig>
		 <monitor/>
		 <monitor/>
		 <monitor/>
		 <monitor/>
	 </monitorConfig>
</ConfigUpdate>

An example file can be found in the main directory of a MonitorEngine install, it is called
monitor.cfg.xml.example. There are three main parts, the agentConfig, accessConfig, and
monitorConfig. Each section can handle an unlimited number of agents, access types,
and monitors, respectively.

70	 |  EXTENDING THE ENGINE WITH META-DATA

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

AgentConfig
The agentConfig lists all the IP addresses or hostnames that will be monitored. Agent IDs
must be numbered and unique. A section for the agentConfig with 2 agents could look
like this:

	 <agentConfig>
		 <agent_ip agent_id=”1”>
			 <ipaddress>192.168.1.1</ipaddress>
			 <ping>true</ping>
		 </agent_ip>
		 <agent_ip agent_id=”2”>
			 <ipaddress>192.168.1.5</ipaddress>
			 <ping>true</ping>
		 </agent_ip>
	 </agentConfig>

AccessConfig
The accessConfig contains a list of protocol/port based access types, and for each of
those types, the details used to define access. A section with one SNMP access type for
the accessConfig would look like this:

	 <accessConfig>
		 <access_snmp port=”161” access_id=”1”>
			 <snmp_version>2</snmp_version>
			 <community_read>public</community_read>
			 <community_write>private</community_write>
		 </access_snmp>
	 </accessConfig>

MonitorConfig
The monitorConfig contains a list of monitored elements.

	 EXTENDING THE ENGINE WITH META-DATA  |	 71

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

Monitor section attributes
The monitor section of the monitor config has several attributes:

agent_id – points to the agent (required)
access_id – points to the access type (required)
monitor_type – points to the monitor type (required)
frequency – the frequency in milliseconds to polls this monitor (optional)
schedule_group – the scheduled polling group that this monitor belongs to (optional)
debug – show debugging for this monitor when monitor debug is on (optional)

MonitorConfig sample
A monitorConfig which monitors the first 3 interfaces from each router agent using
SNMP may look like this:

	 <monitorConfig>
		 <monitor agent_id=”1” access_id=”1” monitor_type=”snmp-mib2-if”>
			 <index id=”1”>1</index>
		 </monitor>
		 <monitor agent_id=”1” access_id=”1” monitor_type=”snmp-mib2-if”>
			 <index id=”1”>2</index>
		 </monitor>
		 <monitor agent_id=”1” access_id=”1” monitor_type=”snmp-mib2-if”>
			 <index id=”1”>3</index>
		 </monitor>
		 <monitor agent_id=”2” access_id=”1” monitor_type=”snmp-mib2-if”>
			 <index id=”1”>1</index>
		 </monitor>
		 <monitor agent_id=”2” access_id=”1” monitor_type=”snmp-mib2-if”>
			 <index id=”1”>2</index>
		 </monitor>
		 <monitor agent_id=”2” access_id=”1” monitor_type=”snmp-mib2-if”>
			 <index id=”1”>3</index>
		 </monitor>
	 </monitorConfig>

72	 |  EXTENDING THE ENGINE WITH META-DATA

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

Monitor Types
MonitorEngine out-of-the-box comes with a set of pre-defined monitor files. They are a
set of XML files that define the way the MonitorEngine needs to collect data.

Monitor Type system files
Monitor Types properties and relations are defined by a set of 3 XML files in the system
subdirectory named monitor-types.xml, monitor-descriptions.xml, monitor-objects.xml.

Please see the cMonitorType.xsd schema file in the system directory for detailed
information about file structure, and what values are permissable and supported.

The monitor-objects.xml file contains one or more descriptive entries for each object
referenced by the monitor-types.xml file (one for each supported language).

The monitor-description.xml file contains one or more descriptive entries for each
monitor type defined in the monitor-types.xml (again, one for each language).

The monitor-types.xml file defines the objects for each monitor type, as well as any
relations to other monitor types. The basic format of this file is this:

<MonitorTypes>
	 <monitor_type>
		 <objects>
			 <object/>
		 </objects>
		 <relations>
			 <relation/>
		 </relations>
		 <exceptions>
			 <exception/>
		 </exceptions>
	 </monitor_type>
</MonitorTypes>

There can be unlimited monitor type sections. Monitor Types are hierarchical, and base
types must be defined before descendents.

	 EXTENDING THE ENGINE WITH META-DATA  |	 73

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

Monitor Objects
These are the actual objects defined in the monitor type definition. It defines the name of
an object, how it will be stored, how data will be treated, etc. An example of an object
definition for a monitor type could be:

<object id=”bytes_in” storage_id=”c1” storage_type=”counter”/>

The storage_id refers to the external database column that data will be stored in. Storage_
type refers to the storage methodology used (i.e. gauge means data will be multiplied
over the poll interval, counter means that the delta will be used over the poll interval,
and raw means that there will be no transformation).

Monitor Relations
Relations are a nifty way to relate one monitor type to another, and then the system can
do relational calculations on data (e.g. aggregations and sums, averages, min, max, etc.).
One could relate interface or trunk monitor types to the router monitor type, and then
look at total interface utilization or average utilization over the router, over time. Some
relation examples could be:
	 <relation id=”interface” type=”agent”/>
	 <relation id=”memory” type=”agent”/>
	 <relation id=”cpu” type=”agent”/>

Monitor Exceptions
Exceptions define triggers for the Notifier based on thresholds, polled or calculated
values, etc. If there are exceptions to be defined for a particular type, do it here:
	 <exception text=”Printer Toner Low” param=”prtPercentageConsumed” compare_		
value=”90” compare_type=”greater_than” compare_object=”value_current” action=”notify”
severity=”warning” trip_count=”1” reset_count=”10” realtime_poll_period=”0”/>

74	 |  EXTENDING THE ENGINE WITH META-DATA

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

Monitor Definition Files

The monitor file definitions tell the engine how to monitor something by specifying the
protocol to use, the objects to query for, and the expressions to use for calculations. In
addition exceptions can be defined. Every monitor file is based on a monitor-type.

All the monitor definitions for the base installation are XML files that live in the monitor
directory. This directory can be changed by changing the system property ‘monitor_file_
location’, please see the PROPERTIES section of the document.

All of these XML definition files are described by the master schema. Please see the
cMonitorType.xsd schema file in the system directory for detailed information about
file structure, and what values are permissable and supported.

The basic structure of the monitor definition file can be found described below.
Each MonitorType definition file can have up to 5 sections, Init, Declares, Queries,
Expressions, and Exceptions. The only required sections are the first three.

Init section
Init describes which type in the system this monitor type represents, the ASN.1 MIB
from which to get OID definitions, and the default access type used for getting data.
Following is an example init section.

	 <init>
		 <monitor_type>snmp-mib2-if</monitor_type>
		 <default_mib>IF-MIB</default_mib>
		 <default_access_type>snmp</default_access_type>
	 </init>

	 EXTENDING THE ENGINE WITH META-DATA  |	 75

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

Declare section
Declare section defines OIDS, constants, and index values for use during polling. An
example of a declare section could be:
	 <declares>
		 <declare id=”ifSpeed” type=”oid”>1.3.6.1.2.1.2.2.1.5</declare>
		 <declare id=”ifHighSpeed” type=”oid”>1.3.6.1.2.1.31.1.1.1.15</declare>
		 <declare id=”ifOperStatus” type=”oid”>1.3.6.1.2.1.2.2.1.8</declare>
		 <declare id=”ifLastChange” type=”oid”>1.3.6.1.2.1.2.2.1.9</declare>
		 <declare id=”ifInDiscards” type=”oid”>1.3.6.1.2.1.2.2.1.13</declare>
		 <declare id=”ifInErrors” type=”oid”>1.3.6.1.2.1.2.2.1.14</declare>
		 <declare id=”ifInUnknownProtos” type=”oid”>1.3.6.1.2.1.2.2.1.15</declare>
		 <declare id=”ifOutDiscards” type=”oid”>1.3.6.1.2.1.2.2.1.19</declare>
		 <declare id=”ifOutErrors” type=”oid”>1.3.6.1.2.1.2.2.1.20</declare>
		 <declare id=”ifHCInOctets” type=”oid”>1.3.6.1.2.1.31.1.1.1.6</declare>
		 <declare id=”ifInOctets” type=”oid”>1.3.6.1.2.1.2.2.1.10</declare>

<declare id=”$ifIndex” type=”index”>1</declare>
	 </declares>

Query Section
Queries define the actual data collection details for the monitor type. There is a maximum
of 128 queries per monitor type. There is a default, and one or more optional alternate
query methods. The query class must be specified, as well as the query alias, which will
be used for reference by subsequent queries and/or expression calculations. Following is
a simple query for the object operstatus. It has been classified as a “status” variable by
using the “class” attribute. It uses a SNMP GET method to query ifOperstatus at ifIndex:
			
<query>
	 <attributes alias=”operstatus” class=”status”/>
	 <default method=”snmp_get”>ifOperStatus.$ifIndex</default>
</query>

76	 |  EXTENDING THE ENGINE WITH META-DATA

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

Following is a complex query for the object speed. It has been classified as a utilization
variable. The default query is for the ifSpeed object, but if the ifHighSpeed object is
present, this will be chosen instead. Units are specified by the “units” attribute.

<query>
	 <attributes alias=”speed” class=”utilization”/>
	 <default method=”snmp_get” units=”bps”>ifSpeed.$ifIndex</default>

<alternate method=”snmp_get” units=”mbps”>ifHighSpeed.$ifIndex </alternate>
</query>

Following is another complex query, that tell the MonitorEngine to poll the ifHCInOctets
object if the value of the speed object (previously defined and polled), is greater than the
value of 20Mbps. If not, the default ifInOctets object will be polled.
<query>

<attributes alias=”bytes_in” class=”utilization”/>
	 <default method=”snmp_get”>ifInOctets.$ifIndex</default>

<alternate method=”snmp_get” param=”speed” compare=”greater_than”
	 value=”20000000”>ifHCInOctets.$ifIndex
</alternate>

</query>

Finally, a query for non-unicast packets in will result in aggregation of results of two
high-capacity variables, ifHCInMulticastPkts and ifHCInBroadcastPkts, if the value of
speed is greater than 640Mbs. If not, the default, ifInNUcastPkts, will be queried.
<query>

<attributes alias=”packets_nucast_in” class=”packets” alt=”all”/>
	 <default method=”snmp_get”>ifInNUcastPkts.$ifIndex</default>
	 <alternate method=”snmp_get” param=”speed” compare=”greater_than” 			
		 value=”640000000”>
		 ifHCInMulticastPkts.$ifIndex
	 </alternate>
	 <alternate method=”snmp_get” param=”speed” compare=”greater_than”
		 value=”640000000”>
		 ifHCInBroadcastPkts.$ifIndex
	 </alternate>
</query>

	 EXTENDING THE ENGINE WITH META-DATA  |	 77

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

Expressions Section
Expressions describe to the MonitorEngine how the collected data will be transformed.
Very often it is just the query object itself. But, it can also be any mathematical
expression involving any of the query objects in the current or a related monitor type.
<expression object_id=”operstatus”>operstatus</expression>

To get speed_in and speed_out, set them each to the polled speed:
<expression object_id=”speed_in”>speed</expression>
<expression object_id=”speed_out”>speed</expression>

Then, to get total speed, sum speed_in and speed_out:
<expression object_id=”speed_total”>speed_in + speed_out</expression>

The following expression defines the value for the object utilization_line_in, which is
the utilization for the interface at the time of the poll. It multiples bytes_in by 8 bits/byte
and then by 100 (for percentage) and then divides by the product of poll time and speed.
_pollTimeSecs is an internal variable.
<expression object_id=”utilization_line_in”>
	 (bytes_in * 8 * 100) / (_pollTimeSecs * speed_in)
</expression>

For calculation of the total bytes in for all router interfaces on a router, use the relation_id
and transform attributes:

<expression object_id=”bytes_in” relation_id=”interface” transform=”sum”>bytes_in

</expression>

Complex expressions with multiple parts can be specified, including setting of variables
inline and multiple if/then/else statements.
<expression object_id=”scale_test”>
	 returnValue1=X;returnValue2=Y;if (scale=10) then returnValue1 else returnValue2;
</expression>

78	 |  EXTENDING THE ENGINE WITH META-DATA

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

Reserved Keywords
The following are special, reserved keywords in the Symbol Processor:

_pollTimeSecs - the number of seconds in the poll period
_pollTimeMSecs - the number of milliseconds in the poll period
_availability - the availability of the monitor during the current poll period
_latency - the latency of the monitor over current poll period
_ kwh_hourly_cost - hourly cost per kilowatt hour over current poll period

Built-in Functions
There are a number of real-time built-in processing functions in the base engine, which
are accessible during expression evaluation. To call a built-in function, simply use the
name of the function and specify the arguments. Function names always start with an
underscore (“_”), as do reserved keywords, and they end with the string “Function”.

<expression object_id=”custom_function_call”>_thisFunction(arg1,arg2)</expression>

RegExpFunction
_regExpFunction - this function allows values to be pulled out of a polled value, using
a regular expression, and return it to the expression evaluator. Values can be numbers or
strings.

usage: _regExpFunction(value,expression,index)

e.g.:

assuming your polled value is “milliAmpsAt42v”, and you wanted to get the number of
volts specified in the string, one could come up with an expression:

_regExpFunction(“milliAmpsAt42v”,”(.*)(AmpsAt)([0-9]*)”,3) = 42

	 EXTENDING THE ENGINE WITH META-DATA  |	 79

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

UnitTypeFunction

_unitTypeFunction - this function converts the value from using one unit type to another
(e.g. milliseconds to seconds, or millamps to amps, or megabytes to bytes).

usage: _unitTypeFunction(value,units)

Valid values for units are: YOCTO, ZEPTO, ATTO, FEMTO, PICO, NANO, MICRO,
MILLI, CENTI, DECI, NONE, DEKA, HECTO, KILO, MEGA, GIGA, TERA, PETA,
EXA, ZETTA, YOTTA

e.g.:

assuming a polled value = 1000, in milliamps, and you want to convert to amps:
_unitTypeFunction(1000, MILLI) = 1 amp

ValueMapFunction

_valueMapFunction - this is a function that will map a polled value to another value and
return it to the expression evaluator. Values need not be numbers, they can be strings as
well.

usage: _valueMapFunction(inputValue,nullValue,test1,test2,test3)

e.g.:

assuming a polled value = 300, there is a match (300=5), so the value is 5...
_valueMapFunction(300,66,100=1,200=2,300=5,400=10) = 5

assuming a polled value = 500, there is no match, so result is nullValue which is 66...
_valueMapFunction(500,66,100=1,200=2,300=5,400=10) = 66

80	 |  EXTENDING THE ENGINE WITH META-DATA

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

Custom Functions
Custom functions can be easily be written in Java and once compiled and put into the
classpath, will be loaded and executable at runtime. To learn how to extend the system
with your own custom functions for expression evaluation, please inquire about our
SDK.

Please contact us by calling 617-475-5209 or using the form:
http://www.oidview.com/contact.html

http://www.oidview.com/contact.html

	 EXTENDING THE ENGINE WITH META-DATA  |	 81

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

Discover Files
During the discover process, certain files are loaded and executed depending on the
agent being discovered. To extend the discover functionality, these files need to be
modified and/or created. All files for the discovery process must be placed in the /
discover directory. There are two special files, services.xml, which controls TCP service
discovery, and snmp-mib2-rules.xml, which controls special rules concerning MIB2
behavior during the discover process. The rest of the files follow a specific format and
have a very specific structure.

Please see the cMonitorType.xsd schema file in the system directory for detailed
information about structure, and what values are permissable and supported.

Filename format
All filenames in the discover directory need to follow a specific nomenclature, as the
system programatically executes and attempts to discover items in the network.

In general, the following filename format is used: {protocol}-{identifier}.xml

The {protocol} is representative of the discover protocol used. Example, ‘snmp’, ‘ipmi’,
‘wmi’, etc. could be used as the protocol (passed in as ‘type’ during the schedule discover
job request), and will be specified for the file prefixes.

The {identifier} can ether be the enterprise number, the feature-set, or possibly a MIB
definition or description.

The majority of them are like this:
snmp-{enterprise-number}.xml
snmp-{enterprise-number}-{feature}.xml

During the discover process, if the discover blade (e.g. SNMP) is looking at a Cisco
Switch, it will load up snmp-9.xml (since Cisco’s enterprise number is 9), and follow the
rules inside that file. Note - a file can fork to other files, that do not have to follow the
same filename format or path.

82	 |  EXTENDING THE ENGINE WITH META-DATA

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

File structure
The discover file structure consists of an init section, a declares section, and a rules
section. See schema object DiscoverRules. Here is the example file structure:

<DiscoverRules>
	 <init>
		 <prefetches>
			 <prefetch/>
			 <prefetch/>
		 </prefetches>
	 </init>
	 <declares>
		 <declare/>
		 <declare/>
	 </declares>		
	 <rules>
		 <rule>
			 <queries>
				 <query/>
				 <query/>
			 </queries>
			 <logic>
				 <atom/>
				 <atom/>
			 </logic>
		 </rule>
	 </rules>

</DiscoverRules>

The init section contains something called “prefetches”, which collect pre-defined data
from the agent, and is executed once per agent discovery.

The declares are executed once per file load. Declares define variables, constants, OIDs,
and indices, etc. to be used during the discover process.

The rules are executed each time an agent is discovered, and after the init section is
processed. A rule can exist by itself, or can be defined by a number of queries and logic
atoms.The behavior is completely customizable and we will discuss in more detail below.

	 EXTENDING THE ENGINE WITH META-DATA  |	 83

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

Prefetches

Prefetches help speed up the discover process. Generally, they scan an entire table or a
single variable for a specific table, and that data is later used during lookup for elements
that will be created as a result of walking an OID or finding instances in that table.

Each prefetch follows the following structure:

<prefetch alias=”$IFTYPE” mib=”IF-MIB”>ifType</prefetch>

This particular prefetch allows the discover process to know the ifTypes for each index it
is processing WITHOUT having to go back to the wire to do an additional SNMP GET
request.

The ‘alias’ is the variable name that will be used later on in the rule during the discover
process. The ‘mib’ is the name of the MIB or identifying group of statistics that this data
will be associated with. The actual value (in this case it’s ‘ifType’), is the representative
object that will be retrieved during the prefetch phase.

Declares

Declares specify different object types to be used during the discover process. There are
5 types of declares: system, oid, constant, variable, index.

system - special type of variable, to be automatically populated by the discover process.
Some valid values are _SYSNAME (to get the sysname from the system table), and
_CLASS (to specify the class type of the object being discovered).

oid - a variable which defines an OBJECT IDENTIFIER (re ASN.1 MIBs). OIDs are
treated in a special way during the discover process.
constant - a static constant value that will not change during discovery

variable - a variable that has no initial setting but will be used dynamically

index - a special variable that represents an index into a table

84	 |  EXTENDING THE ENGINE WITH META-DATA

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

Some declaration examples:

<declare id=”_SYSNAME” type=”system”/>
<declare id=”ifNumber” type=”oid”>1.3.6.1.2.1.2.1</declare>
<declare id=”$CEMP_MEM_POOL_INDEX” type=”constant”>1</declare>
<declare id=”$D_IFTYPE” type=”variable”/>
<declare id=”$cpmCpuTotalIndex” type=”index”>1</declare>

Rules

Rules are the actual engine of the discover process (please see schema ‘rule’ and for
snmp rules, ‘SNMPType’). All discovery functionality can be achieved by using the rule-
based language, no extra perl, tcl, or shell scripting is needed. Each ‘rule’ is comprised of
attributes, and optionally ‘query’ and ‘logic’ elements.

The rule attributes are as follows:

id - the identifier (unique) for this rule
class - physical class type for elements to be created (see schema PhysicalClassType)
monitor_type - the monitor-type of the element that will be created
index_oid - the OID to walk in order to determine which instances to base creation
pattern_name - the pattern to use for element names
pattern_key - the pattern to use for the key
prefetch_mib - the mib to use for prefetches
virtual - is this to be a virtual element
hidden - only execute when directly referenced
singleton - only execute once per agent
index_scalar - is this a scalar element
indexes_off - do not process indexes
stop - stop if this rule is true

A rule example:

<rule id=”cable-upstream” class=”port_logical” monitor_type=”snmp-
cable-upstream” index_oid=”ifType” pattern_name=”_SYSNAME-port-

$IFDESCR” prefetch_mib=”IF-MIB”>

	 EXTENDING THE ENGINE WITH META-DATA  |	 85

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

Rule Queries
The rule query is a query that is executed in the protocol named by the parent file,
using the attributes in the query (please see schema QueryOidType). There can be an
unlimited number of queries, but generally, you want to use as few queries as possible.
Each query must return a value of TRUE in order to continue processing a rule, unless
otherwise marked as ‘optional’. Optional queries are useful when needing to get
additional information for naming or helping to determine which path down the decision
tree may be followed.

The query attributes are as follows:

alias - the id for this query and also the variable to which query responses are assigned
oid - the object identifier that is queried
query_type - the type of query (i.e. get, getnext, etc. see schema QueryMethodType)
match_value - the value to match
execute - the script, logic atom or function to execute
execute_type - type of execute (i.e. atom, rule, shell_cmd, see DiscoverExecuteType)
optional - (true/false). If not optional and query fails, discover will fail for this rule

A query example:

<query alias=”$PHYS_DESCR” oid=”entPhysicalName.$TOTALPHYSINDEX”
	 query_type=”snmp_get” optional=”true”/>

Rule Logic Atoms

Logic atoms (please see schema object DiscoverLogicAtom) are executed either by
being called directly from a corresponding or referencing query item in the same rule,
or in round-robin fashion simply because they are listed in the logic section of the
same rule. All logic atoms in a particular ‘rule’ group must be executed and all must
pass a return value of ‘true’ except for those that are marked as ‘optional’ or marked
as ‘subatoms’. Once all atoms have been processed (or a ‘stop’ has been hit), the AND
results of all the atoms will be considered, and the monitor will be created for that ‘rule’
if there was an overall ‘true’ value passed back (i.e. all atoms returned true).

86	 |  EXTENDING THE ENGINE WITH META-DATA

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

The logic atom attributes are as follows:

alias - the id for this atom as can also be the variable to which the result is stored
input_type - type of input for atom (see schema DiscoverVariableInputType)
input - the actual input (could be a query result, function, etc.)
function_type - the type of function (see schema DiscoverVariableFunctionType)
function - the function itself
regexp_parameter - if regexp is being used, specify pattern here
stop - should discover stop here if this atom executes and returns true
execute_type - type of atom execution (see schema DiscoverExecuteType)
execute - the actual thing/script to execute
sub_atom - (true/false) - specifies whether this atom is a sub-arom (i.e. can it be called
directly by an execute command or is it the child of a parent atom)
optional - (true/false) - if set to true, it is not conditionally required to return true	
	
Some logic atom examples:

An atom that takes the split function, uses the index OID as the value to split, and returns
the first index into the alias variable $cpmCPUTotalIndex:

<atom alias=”$cpmCPUTotalIndex” input_type=”oid” input=”rule” function_
type=”split” function=”1”/>

An atom that takes the result of the walked instance, and sets the variable
“$TOTALPHYSINDEX” as the result:

<atom alias=”$TOTALPHYSINDEX” input_type=”result” input=”rule”
function_type=”set”/>

An atom that takes the contents of the variable “$PHYS_DESCR” and sets a new
variable “$CPUNAME”:

<atom alias=”$CPUNAME” input_type=”result” input=”$PHYS_DESCR”
function_type=”set”/>

	 EXTENDING ENGINE WITH CODE  |	 87

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

Extending the Engine using Code

In addition to all the meta-data configuration that can be implemented with the system,
there is also core code and several engine components that can be extended.

Extendable Components
Currently the areas of the system that can be extended include the discover and polling
engines (by extending or creating new blades), output engines (for new types of
databases and/or data destination), custom formulae in the analysis engine, and various
file and configuration readers.

Get the SDK
We have an SDK that is currently available as part of our OEM program. Included in the
SDK are documented, detailed and working code samples for extending each part of the
system. To find out more, please contact us by calling 617-475-5209 or using the form:
http://www.oidview.com/contact.html

http://www.oidview.com/contact.html

88	 |  DATABASE

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

Database

Supported Databases
Out of the box, Jaguar SXE supports an embedded version of H2, MySQL, and
SQLServer. Some limited support for Oracle was added, but needs further work.

Performance
Performance testing has been conducted using the MySQL Community version database.
Bulk data insertion for 300,000 interfaces (over 10,000,000 datapoints), was repeatedly
performed in 5 minute intervals in under 30s, using standard IDE 500Gb drives running
at 7500rpm.

Administration
To administer the embedded H2 database, please follow the instructions in the setup
chapter of this guide under the section ‘Database Web Interface’. Administration for the
other databases is handled by their own respective tools.

Automated Rollups
Data is stored in the database according to the configuration settings. By default, raw data
will be stored for 7 days and rolled up data will be stored hourly and daily. Data is rolled
up via an automatic hourly job and the polled data from the raw data tables are averaged
into an hourly table. Consequently, once a day, the hourly data is rolled up into a daily
datatable.

Database Schema
The full database schema (for all supported databases), can be found on the installation
disk/media in the src/database directory, in the form of SQL files. In addition, all update
SQL files are present in the same directory.

	 DATABASE  |	 89

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

Data Tables
The schema template for tables performing data storage is in a table called ‘monitor_
stats’. All data tables are dervied from this base table. All tables storing data are also
indexed in a configuration table named ‘monitor_stats_tables’. This table contains
information about each data table (period, time opened, time closed, type of data, etc.).
Finally, each data table is named according to the following pattern:

z{createtime}_{period}_{type}

where createtime is in milliseconds, period is the poll period for raw data tables (or the
rollup period for rollup tables), and type describes the type of data table.

type = 0, raw data or rollup data (avg)
type = 1, realtime data
type = 3, rollup data (min)
type = 4, rollup data (max)

Examples of data table names:

Z1352862000000_60000_0 - raw polled data (60s)
Z1352610000000_3600000_4 - hourly rolled up data (max)
Z1351656000000_86400000_0 - daily rolled up data (avg)

90	 |  DATABASE

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

Configuration Tables
All configuration information can be retrieved from the database using standard SQL.
Following is a list of all the table names and descriptions. For more detail, please see the
schema for reference.

TABLE NAME DESCRIPTION

access_cfg Table of top-level access information

access_cfg_snmp Table describing access config for SNMP

access_cfg_snmpv3 Table describing access config for SNMPv3

access_profile Table describing access profiles for discovery

access_profile_group Table grouping access profiles

agent_cfg Describes agent configuration

agent_info Describes detailed information about each agent

alert_severities Severities for alerts, language specific

alert_types Describes different alert types

alerts All notifications (see chapter on Notifier), are stored here

configuration Polled configuration information is stored here

discover_profiles Discovery profiles

enterprise List of enterprise numbers

groups List of groups configured in the system

groups_stats_summary State summary by group, updated each default poll period

language Languages supported

language_web The translations for the WEB UI

locations List of Longitude and Latitude Coordinates for Maps

mib MIBs currently loaded in the system

	 DATABASE  |	 91

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

TABLE NAME DESCRIPTION

mib_object_values MIB object detail definitions

mib_objects MIB objects loaded

monitor_cfg The entire monitor configuration

monitor_cfg_frequency The frequency of each monitor

monitor_description The description of the monitorTypes

monitor_engines The list of remote pollers (monitor engines) running

monitor_exceptions Exception definitions (See the chapter ‘EXCEPTIONS’)

monitor_group Stores monitor IDs by group

monitor_object The objects defined in the monitorTypes

monitor_object_unit The units supported by the objects

monitor_stats The template table used to create new data tables

monitor_stats_tables List of data tables presently in the database

monitor_temp TBD

monitor_type Details for all Monitor Types registered in the system

monitor_type_relations All relation definitions between Monitor Types

monitor_type_stats_summary State summaries for Monitor Types, updated each poll

organization List of organizations

power_inputs List of power inputs

power_inputs_hourly Hourly costs for power inputs

relations Relates monitors by ID, type and object

reports List of pre-defined reports (UI)

reports_saved List of saved report files

scheduled_jobs All scheduled jobs in the database

92	 |  DATABASE

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

TABLE NAME DESCRIPTION

service_thresholds Thresholds for SLAs (not currently used)

syslog Stores captured syslog messages

system_cfg TBD

system_info Stores version information about Schema, Monitor Types

system_messages Logged system information. Purged daily by default.

tiles Dashboard configurations (UI)

trapbuckets Trap categories called ‘buckets’ (Trap Manager)

trapconditions Conditions by Filter (Trap Manager)

trapfilters Trap Filter definitions (Trap Manager)

traps Stores captured SNMP Traps (Trap Engine)

user_access_log User login / logout time and date

user_detail Extra information on users (UI)

user_group_access Relates users to group access priviledges (UI)

user_info Basic information about users like username, email. (UI)

user_notes User defined notes (UI)

user_profile User Profiles for quick user creation

user_views Dashboard details by user (UI)

user_views_layout Dashboard layout by Dashboard ID (UI)

	 EXCEPTIONS ENGINE  |	 93

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

Exception Engine

The exception engine is a critical component that analyzes polled data in memory, in
REALTIME (i.e. it does not query the database nor does it run ‘jobs’ over historical
data). The engine compares the data with pre-defined rules in the system (those rules
are definied in the ‘monitor_exceptions’ table), and based on the definition criteria can
trigger a number of actions based on those rules.

Please see the cMonitorType.xsd schema file in the system directory for detailed
information about supported parameter types.

Exception Parameters
ID - the database ID of the exception
MONITOR_TYPE - the monitor type the exception is based on
OBJECT_ID - the object the monitor is based on
COMPARE_VALUE - the value to compare the polled value to
COMPARE_TYPE - the type of comparison to make (see ParamComparatorType)
COMPARE_OBJECT - object to compare to (see ParamObjectComparatorType)
ACTION - the action to perform - Notify, etc. (see ExceptionActionType)
SEVERITY_ID - the severity to assign if Notify (see NotificationSeverityType)
TRIP_COUNT - the number of times it must occur to trigger an action
RESET_COUNT - the number of times it must NOT occur to trigger a reset
REALTIME_POLL_PERIOD - if action is set to REALTIME, the poll period in ms
ENABLED - is this exception enabled (allows turning on/off exceptions without delete)
OBJECT_GROUP_ID - allows grouping of multiple exceptions together to trigger
MONITOR_ID - allows specific targeting of the exception for a single Monitor
EXCEPTION_TEXT - the user visible description text of the exception

Triggering an Exception
Exceptions are based on a particular object or set of objects in a monitor type. When
these objects have data that crosses a certain threshold or causes an exception definition
to be evaluated as ‘true’, then an ‘exception’ is triggered. Depending on the action, either

94	 |  EXCEPTIONS ENGINE

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

a Notification will be created (please see the section on ‘Notifier’), or the particular
monitor that triggered the exception can be watched for some additional time at an
adjusted polling frequency to see if there are additional trips or if the situation clears
itself up.

	 NOTIFIER  |	 95

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

Notifier

The NotifierEngine is in charge of receiving, managing and alerting on all events
created by the system. Events can come through either the Exception Engine, the API, or
otherwise be created by the system itself in the case of agent specific reachability events,
system errors, or other miscellaneous occurances. If it is desired that the Notifier does not
run or process events, it can be disabled (see the system property notifier_disabled). Notifier
actions include sending an email, logging to a database, and also playing an Audio File
(see the system property notifier_audio_url).

Notifier Users
Each user in the system (defined in the database, if used), has a notifier property. If the
email is set, then when a notification is created, if the user is in the notification group,
that user will receive an email.

Notifier Events
Events in the notifier have a lifespan (see the system property notifier_event_expire_period).
Once created, depending on system configuration, an alert will be sent out initially. Then,
there is a repeat period, in which after that period another alert will be sent. After the
expire period, if the event has not been reissued by the system, it will be deleted from the
system and alerts will not be sent out anymore (this is like an automatic clear). Events
that are cleared via the API or internally (i.e. the situation rights itself), will not send out
periodic alerts and will be deleted during the maintenance phase.

Duplicate Events
If a duplicate event is created and sent to the Notifier before a timeout period has passed
(see the system property notifier_event_timeout_period), then it will become part of the
existing event, and the last updated time will be set, essentially incrementing the existing
counter and restarting the clock. If the event continues to be sent by the system, the event
will essentially never ‘die’, and will repeatedly be alerted on until the user manually
clears it or the situation that caused the event is fixed.

96	 |  REPORT ENGINE

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

Report Engine

Jaguar has an embedded Report Engine that will produce output in XML or JSON
format. Reports can be scheduled internally by the engine itself (i.e. from scheduled
jobs defined by users), or they can be run ad-hoc via the API. The report engine can be
disabled by modifying the system property reportengine_disabled.

Report Types
The following types of reports are supported:

Single Series

A single-series report is a report of a single variable over time.

Multi-Series

A multi-series report is a report of one or more variables over time.

Multi-Subject

A multi-subject report is a report for a single variable, over multiple subjects (i.e.
monitors), over time.

Top-N Report

A top-N report is a volume report for a single variable for the top-N subjects over a
period of time.

PDF Reports
The engine can also create PDF reports. The PDFs are generated by a third party library
called jFreeChart and a supporting library named iText (which is a commercial product).
Users of PDF reports must pay a royalty fee (as part of the license cost), so we can in
turn pay the iText Corporation.

	 REPORT ENGINE  |	 97

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

Running and Retrieving Reports
To run a report, and get the result, a report must be added to the scheduler using the API
(see the API command report.schedule.add). Once the report is scheduled, a report_id will be
returned.

To get the report results, again the API must be called (please see the API command
report.results.get). If the results are ready, they will simply be returned as XML text (or as
JSON text if that was specified in the options). If they are not ready, a return code of
“RUNNING”, “FAILED”, or “ERROR” will be returned.

Report Arguments via API

Here is an example API call to schedule and run a report via the API.

./xmlApiClient -o report.schedule.add -i report_topn
-v “outputformat=xml&reportname=JaguarReport&reporttyp
e=4&charttype=8&reportcomponent=1&monitor_type=router-
generic&variables=bytes_total&datatype=hourly&periodtype=la
st24hours&pollfrequency=60000”

This particular example shows a request for a topN report, in XML format, named
‘JaguarReport’, which is going to show us the top-10 monitors using the monitor_type
‘router-generic’ for the variable ‘Total Bytes’, hourly rolled up data, over the last 24
hours, on data with a poll frequency of 60s.

96	 |  REPORT ENGINE

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

Report parameter arguments are as follows:

ARGUMENT DESCRIPTION
outputformat the output format of the resulting report. options are ‘xml’ or ‘json’
reportname the name of the report. does not have to be unique but cannot hurt
reporttype integer representing the type of report

0=NONE
1=SINGLE_SERIES
2=MULTI_SERIES
3=MULTI_SUBJECT
4=TOPN

charttype integer representing the type of chart

1=CHART_BAR_HORIZ
2=CHART_BAR_HORIZ_STACK
3=CHART_BAR_VERT
4=CHART_BAR_VERT_STACK
5=CHART_LINE
6=CHART_AREA
7=CHART_AREA_STACK
8=CHART_PIE
9=CHART_DOUGHNUT
10=CHART_XY
12=CHART_BAR_HORIZ_TOPN
13=CHART_BAR_VERT_TOPN
14=GRID
15=EXPORT_CSV)

	 REPORT ENGINE  |	 99

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

ARGUMENT DESCRIPTION
reportcomponent the component to run the report on

1=Monitor
2=Relation
3=Group

monitor_type The Monitor Type to base the report on. Only valid reports are TopN.
variables the variable(s) to collect the data from
datatype specifies type of data to query. Valid values:

RAW, RAW_RATE, HOURLY, HOURLY_RATE, DAILY, DAILY_
RATE

The “_RATE” types simply divide the results by time to get a rate.

periodtype the period over which to run the report:

LIVECHART - live chart which would give the last poll period
LASTHOUR - last hour of data
LAST6HOURS - last 6 hours of data
LAST12HOURS - last 12 hours of data
LAST24HOURS - last 24 hours of data
LAST7DAYS - last 7 days of data
LAST30DAYS - last 30 days of data
CUSTOM - use for custom date ranges (use with sd and ed args)

pollfrequency the frequency tells the engine which tables to query data for and
whether or not to use RAW or ROLLED data

sd start date (in milliseconds) to be used with CUSTOM periodtype
ed end date (in milliseconds) to be user with CUSTOM periodtype

96	 |  REPORT ENGINE

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

Report Results
The format of the results is returned in a structure that is fairly easy to parse. A “chart”
object is returned, and inside of that, unit definitions, category definitions (for axis labels
- usually time), and one or more datasets... inside each dataset is a ‘set’ object which is
itself just a single datapoint.

Report XML

Here’s an example of a shortened report result. Each category has a category id (catid),
and then in the dataset set objects, they each refer to the catid. That way, the datapoint
lines up with the category, which is in this case, a time label.

<chart caption=’Utilization’ yAxisName=’Percent - gauge’ 	
	 showLegend=’1’ slantLabels=’1’ xAxisName=’Time’>
 <units>
	 <unit label=’Percent - gauge’ id=’PERCENT_GAUGE’ />
 </units>
 <categories>
	 <category label=’Fri Nov 16 15:18:23’ catid=’1’ />
	 <category label=’Fri Nov 16 15:19:23’ catid=’2’ />
 </categories>
	 <dataset id=’util_line_in’ seriesname=’BW Util’>
		 <set value=’0.005582666666666666’ catid=’1’ />
		 <set value=’0.005342666666666667’ catid=’2’ />
	 </dataset>
</chart>

	 REPORT ENGINE  |	 101

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

Chart Definition XML Structure

Following is an example of the report return result XML structure. For a multi-series or
multi-subject report, there will be several datasets, respectively. For a single-series or
TopN report, there will only be 1 dataset.

<chart>
	 <units>
		 <unit/>
	 </units>
	 <categories>
		 <category>
		 </category>
	 </categories>
	 <dataset>
		 <set/>
		 <set/>
	 </dataset>
</chart>

102	 |  GLOSSARY

Jaguar Technical Reference Guide

Jaguar Technical Reference Guide

Glossary

AGENT
A piece of software (acting as an ‘agent’), that’s being monitored, is addressable using
TCP/IP (or some other addressing scheme), and has X number of monitored properties
(and most probably Y number of ‘Monitors’). Internally, the monitorengine uses
‘Agents’. The term ‘Agent’ is used interchangably with ‘Host’ and ‘Device’.

DEVICE
A machine that’s being monitored. Same thing as a ‘Host’ or ‘Agent’.

ENGINE
A software component with various properties that runs in it’s own thread, in perpetuity
until the entire system is shut down.

HOST
A device or agent that’s being monitored. Used interchangebly with ‘Agent’ or ‘Device’

MONITOR
A group of 1 or more statistics being monitored on an ‘Agent’.

POOL
A group of ‘engines’. Each pool can be configured in terms of size and component type.
Busy engines of a certain type will be managed by the ‘Pool’ of that specific type. When
a new ‘Engine’ is needed, the ‘Pool’ will dynamically create one. When an engine is
finished it’s work, it will be returned to the ‘Pool’ for later use.

POLLER
A software component that ‘polls’ or requests data at specific intervals from an ‘Agent’,
in discrete packets organized by ‘Monitor’

REALTIME (ANALYSIS)
Data Analysis done in memory, in real-time.

REALTIME (POLLING)
Data acquistion (polling), done in intervals from 100ms to 30 seconds.

ByteSphere LLC

260 Franklin Street, Floor 11

Boston, MA 02110

USA

617-475-5209

support@oidview.com

www.oidview.com

