

42	 |  PROPERTIES REFERENCE

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

PROPERTY NAME PROPERTY DESCRIPTION and EXAMPLES

ping_monitor_tcp_connect_time-
out

The number of milliseconds for a TCP connection
attempt to be consifered a failure during the polling
process.
ping_monitor_tcp_connect_timeout=2000

ping_monitor_tcp_connect_time-
out_discover

The number of milliseconds for a TCP connection
attempt to be considered a failure during the service
discovery process.
ping_monitor_tcp_connect_timeout_

discover=1000

ping_monitor_wait_time The amount of time in milliseconds to wait between
PING jobs.
ping_monitor_wait_time=5000

poller_bind_addresses If the poller should use multiple NIC cards or needs
to bind to a specific card or IP address, enter those
values here. If more than one bind address is specified,
the system will bind to them in a round robin fashion.
Default, not set.
poller_bind_addresses=10.1.1.96,10.1.1.56

poller_blade_count The number of custom polling blades defined in the
configuration. Then, this number is used in the rest of the
poller_blade_** property settings.
poller_blade_count=2

	 PROPERTIES REFERENCE  |	 43

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

PROPERTY NAME PROPERTY DESCRIPTION and EXAMPLES

poller_blade_X_class The java fully-qualified class name (FQCN) of the poller
blade being defined. The pollerengine’s blade classloader
looks for this FQCN and loads it dynamically at runtime.
poller_blade_1_class=com.bytesphere.

pollerblades.PING

poller_blade_2_class=com.bytesphere.

pollerblades.SNMP

poller_blade_X_type The access type for this particular poller blade. The X
represents the number of the blade definition. The value
for the variable is the access-type itself.
poller_blade_1_type=PING

poller_blade_2_type=SNMP

poller_counters_zero_nega-
tive_deltas

This prevents aberrant counter behavior from skewing
data if certain deltas come back negative. When set to
true, those values are simply inserted as zero.
poller_counters_zero_negative_deltas=false

poller_dispatch_max_monitors Max number of monitors to dispatch per poller instance
poller_dispatch_max_monitors=100000

poller_div0_null_values The way to handle results with division by zero.
Setting to false sets the result to 0 (false)
Setting to true sets the result to null
poller_div0_null_values=false

poller_output_normalized_values Should the expression engine pre-normalize values
based on the defined storage_type in the monitor-types.
xml file for this object?
poller_output_normalized_values=false

44	 |  PROPERTIES REFERENCE

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

PROPERTY NAME PROPERTY DESCRIPTION and EXAMPLES

poller_period The default poll period between polls in milliseconds.
all monitoritems will be polled at this frequency
unless otherwise specified.
poller_period=300000

poller_period_rae_launch_cutoff The max length of the poll period before Results
Analysis Engine (RAE) is launched. By default it waits
up to 90% of the defined poller period.
poller_period_rae_launch_cutoff=270000

poller_period_realtime_cutoff Any monitored item with a frequency of LESS than
this will automatically be added to the real-time poller
queue.
poller_period_realtime_cutoff=30000

poller_period_realtime_default The realtime default polling period between polls in
milliseconds.
poller_period_realtime_default=10000

poller_period_realtime_rela-
tion_max

The max number of relations allowed to set to realtime
polling when setting realtime frequencies for relations
automatically. If the relation count is higher than this
do not allow realtime for a device (i.e. a router and it’s
relations).
poller_period_realtime_relations_max=1000

poller_timeouts_autoreset_in-
terval

Implement autoreset of all agent timeouts in
milliseconds. Setting this resets all agents that may have
timed out and had polling turned off every {interval}
milliseconds. Polling will be attempted again after this
interval, globally.
poller_timeouts_autoreset_interval=360000

	 PROPERTIES REFERENCE  |	 45

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

PROPERTY NAME PROPERTY DESCRIPTION and EXAMPLES

poller_zero_null_values Substitutes 0 for null values. Default value should be
true. This allows for evaluations of complex expressions
if certain values are missing and could not be collected
poller_zero_null_values=true

port_monitoring_enabled Enables / Disables service port discovery and
monitoring. Service monitoring will use TCP
connections to talk to well known services to ensure
that they are still running and responding to requests.
This function does not work well on Windows operating
systems, but works fine on Linux. It is disabled by
default.
port_monitoring_enabled=false

reader_bytesphere_cfg The reader that scans the monitor.cfg.xml file on
startup (or on an API call), that populates the polling
configuration. To extend the reading capability, put in
the custom classname here and make sure the jar is in
the classpath.
reader_bytesphere_cfg=com.bytesphere.reader.

ByteSphereCfgReader

reader_bytesphere_cfg_monitor The reader that scans all the monitor xml files in the
monitor directory, on startup (or on an API call), that
populates the monitor polling definitions in the engine’s
memory and db. To extend the reading capability, put in
the custom classname here and make sure the jar is in
the classpath.
reader_bytesphere_cfg=com.bytesphere.reader.

MonitorFileReader

50	 |  API REFERENCE

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

API

MonitorEngine has a built in webservice interface that can be used for administration.
Almost everything can be done via the API. The UIs also use the same webservice
interface to communicate with the system. The API runs on port 1970 by default. To
change this port, please see the PROPERITES section of this document and refer to the
‘webservice_port’ property.

To see an example of the WSDL of the running service, use the following command on
the local system: http://localhost:1970/XmlApi/XmlApiService?wsdl

There is also a command line tool supplied for all operating systems during the install
process, called xmlApiClient. The command line structure takes seven parameters:

1.	 operation (required) – the specific operation to be performed (“-o”)
2.	 object – the id or name of the object on which to perform the operation (“-i”)
3.	 value – the parameter or value to be set (“-v”)
4.	 address - the address of the service (defaults to localhost) (“-a”)
5.	 username - the username to authenticate with (defaults to ‘bytesphere’) (“-u”)
6.	 password - the password to authenticate with (defaults to ‘bytesphere’) (“-p”)
7.	 wsdl - the wsdl file to use (defaults to the local wsdl file) (“-w”)

Not all parameters are required for all commands, but the -o (operation) parameter is
required. For example, on the local machine, the client command is called like so:

xmlApiClient -o {operation} -i {object(s)} -v {value}

For example, to check whether or not a remote system is alive, use the “-a” parameter:

xmlApiClient –o system.alive –a http://{remoteIP}:1970/XmlApi/XmlApiService

	 API REFERENCE  |	 51

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

API Response Codes
Most of the time, the API responds with an error code and then the result. For example,
the response to “system.alive” should be “0|OK”. The first number is the API response
code, and the rest of the response is either the response itself or a descriptive string of the
code or error. At other times but only in special circumstances (i.e. report.results.get), the
response will be a very large string with no error code.

CODE DESCRIPTION
0 OK
1 Operation does not exist
2 Exception Occurred
3 Monitor does not exist
4 Agent does not exist
5 Monitor could not be deleted
6 Could not get required dispatcher
7 Could not set frequency
8 Monitor ID not specified
9 Agent ID not specified
10 Operation failed
11 No such monitor type exists
12 No such access type exists
13 Operation not allowed
14 Disabled
15 Job ID not specified
16 No jobs exist

52	 |  API REFERENCE

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

API Operations List
Following is a full list of all the operations available via the API.

OPERATION NAME OPERATION DESCRIPTION and EXAMPLES

access.community.get Retrieves the SNMP community string for a particular access
type. Retrieval requires the access_id, please see the database
schema section for more information.
-o access.community.get -i {access_id}

access.community.set Sets the SNMP community string for a particular access type.
Requires the access_id, please see the database schema section
for more information.
-o access.community.set -i {access_id} -v

{community_string}

agent.config.reset Resets all timeout values for the entire agent configuration.
-o agent.config.reset

agent.delete Deletes a specific agent from the agent configuration.
-o agent.delete -i {agent_id}

agent.enabled.set Enables / Disables a specific agent in the agent configuration.
Disabling an agent turns off polling and it will not be turned
back on until manually re-enabled, even on discovery (in
effect, this is the same as “retiring” an agent.
-o agent.enabled.set -i {agent_id} -v false

agent.frequency.set Sets the polling frequency for ALL monitors belonging to a
specific agent in the agent configuration.
-o agent.frequency.set -i {agent_id} -v 60000

agent.organization.get Gets the organization ID for a specific agent in the agent
configuration.
-o agent.organization.get -i {agent_id}

	 API REFERENCE  |	 53

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

OPERATION NAME OPERATION DESCRIPTION and EXAMPLES

agent.organization.set Sets the organization ID for a specific agent in the agent
configuration.
-o agent.organization.get -i {agent_id} -v

{organization_id}

eventmgr.{facility}.ack Ack a particular event from the EVENT_TYPE {facility}
specified. Valid facilities are currently ‘trap’ or ‘syslog’. For a
full list , please see the MonitorConsts. EVENT_TYPE Enum
Constant, in the CONSTANTS section of this document.

The ‘event_id’ to be specified must be the id of the actual
event generated by {facility}. For example, if it’s ‘trap’, then
the trap_id must be specified. If it’s ‘syslog’, then the syslog_
id must be specified.

The rest of the ack, clear, and unack operations for eventmgr
all follow suit.

-o eventmgr.trap.ack -i {event_id}

eventmgr.{facility}.ack_n Ack one or more events from the specified facility.
-o eventmgr.trap.ack_n -i {event_id1,event_id2}

eventmgr.{facility}.ackall Ack all events from the specified facility.
-o eventmgr.trap.ackall

eventmgr.{facility}.clear Clear an event from the specified facility.
-o eventmgr.syslog.clear -i {event_id}

eventmgr.{facility}.clear_n Clear one or more events from the specified facility.
-o eventmgr.syslog.clear -i {event_id1,event_id2}

eventmgr.{facility}.clearall Clear all events from the specified facility.
-o eventmgr.syslog.clearall

54	 |  API REFERENCE

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

OPERATION NAME OPERATION DESCRIPTION and EXAMPLES

eventmgr.{facility}.unack UnAck an event from the specified facility.
-o eventmgr.trap.unack -i {event_id}

eventmgr.{facility}.unack_n UnAck one or more events from the specified facility.
-o eventmgr.trap.unack_n -i {event_id1,event_id2}

eventmgr.{facility}.unackall UnAck all events from the specified facility.
-o eventmgr.trap.unackall

mibwalker.walk Performs an SNMP MIBWalk on a target agent. All the
parameters are specified in the -v switch.

-req <request> send request to agent. (0=get_bulk,1=get_next)
-v 1|2c|3 SNMP version
-ip <hostaddress> IP Address of Host
-a <outputfile> File to Append to
-f <outputfile> File to Output
-o <targetOid> OIDs to Target
-p <port> SNMP Port
-m <max_repetitions> Maximum number of repetitions
-r <attempts> Number of retries
-t <secs> SNMP Timeout
-forceGB Force GetBulkRequest, do not walk
-hc <mode> STRING output (0 = hex, 1 = ascii, 2 = text)
-c <community> SNMP Community (SNMPv1/v2c only)
-u <username> Username (required) (SNMPv3 only)
-E <engineid> Context Engine ID (SNMPv3 only)
-n <name> Context Name (SNMPv3 only)
-ap <authproto> Authentication protocol <md5|sha> (SNMPv3 only)
-A <password> Authentication password (SNMPv3 only)

-X <password> Privacy password (SNMPv3 only)

-o mibwalker.walk -v “ip={address},v 2c,

o=1.3.6.1.2.1.2.2.1.2“

	 API REFERENCE  |	 55

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

OPERATION NAME OPERATION DESCRIPTION and EXAMPLES

monitor.config.reset Resets all the monitor configuration polling states. Only use
when directed by technical support.
-o monitor.config.reset

monitor.delete Deletes a particular monitor from the configuration (both in
memory and the DB). Either the monitor ID or the NAME can
be used.
-o monitor.delete -i {monitor_id | monitor_name}

monitor.enabled.get Gets the enabled state of a particular monitor. Either the
monitor ID or the monitor NAME can be used.
-o monitor.enabled.get -i {monitor_id}

monitor.enabled.set Sets the enabled state of a particular monitor. Either the
monitor ID or the NAME can be used.
-o monitor.enabled.get -i {monitor_id} -v true

monitor.frequency.get Gets the frequency of a particular monitor. Either the monitor
ID or the NAME can be used.
-o monitor.frequency.get -i {monitor_id}

monitor.frequency.set Sets the polling frequency of a particular monitor. Either the
monitor ID or the NAME can be used. Specify milliseconds.
-o monitor.frequency.set -i {monitor_id} -v 60000

monitor.organization.get Gets the organization ID of a particular monitor. Either the
monitor ID or the NAME can be used.
-o monitor.organization.get -i {monitor_id}

monitor.organization.set Sets the organization of a particular monitor. Either the
monitor ID or the NAME can be used.
-o monitor.organization.set -i {monitor_id} -v 2

56	 |  API REFERENCE

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

OPERATION NAME OPERATION DESCRIPTION and EXAMPLES

monitor.realtime.get Gets the realtime frequency of a particular monitor. Either the
monitor ID or the NAME can be used.
-o monitor.realtime.get -i {monitor_id}

monitor.realtime.set Sets the realtime frequency of a particular monitor. Either the
monitor ID or the NAME can be used. Specify milliseconds.
-o monitor.realtime.set -i {monitor_id} -v 15000

monitor.states.list (D) Gets the summary of states for all monitors
-o monitor.states.list

monitor.stats.get Gets the last polled statistic for a particular monitor.
-o monitor.stats.get -i {monitor_id} -v {stat_id}

monitor.type.get Returns the monitor type for a particular monitor
-o monitor.type.get -i {monitor_id}

monitor.type.set Sets the monitor type for a particular monitor
-o monitor.type.get -i {monitor_id} -v {type}

notifier.events.ack Acknowledges an event. Event_id is the database id of the
event.
-o notifier.events.ack -i {event_id}

notifier.events.ack_n Acknowledges one or more events. Use comma to separate
event ids.
-o notifier.events.ack_n -i {event_id1,event_id2}

notifier.events.ackall Acknowledges all events.
-o notifier.events.ackall

	 API REFERENCE  |	 57

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

OPERATION NAME OPERATION DESCRIPTION and EXAMPLES

notifier.events.add Adds an event. Use when wanting to trigger an externally
generated Notifier Event or Exception that is not triggered by
the engine. Takes the following parameters:

object: target object (could be monitor name, IP address, etc.)
event_type: type of event (see schema NotifierEventType)
severity: severity of event (see schema NotificationSeverityType)
message: text message describing the event
exception_key: if triggered by an exception, the key of the exception

-o notifier.events.add -v “object={object},event_

type=THRESHOLD_OUTOFRANGE,severity=CRITICAL,messag

e=’Threshold exceeded for Errors’”

notifier.events.clear Clears an event in the notifier (in memory and database).
-o notifier.events.clear -i {event_id}

notifier.events.clear_n Clears one or more events in the notifier (in memory and
database).
-o notifier.events.clear_n -i {event_id1,event_id2}

notifier.events.clearall Clears ALL events in the notifier (in memory and database).
-o notifier.events.clearall

58	 |  API REFERENCE

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

OPERATION NAME OPERATION DESCRIPTION and EXAMPLES

notifier.events.lookup Returns all matching events in the notifier by either monitor
id or exception key. This allows the caller to figure out if there
are any events directly generated by a particular monitor OR if
there are any events that match a specific triggered exception.
Valid parameters are ‘monitor_id’, ‘exception_key’, or
‘mid_ekey’ (for both monitor id and exception key. If using
the latter method, the string passed in should use the pipe
delimeter between the monitor id and exception key (e.g.
10683|bytes_total_100.1.0)

-o notifier.events.lookup -v monitor_id=10683

notifier.events.unack UnAck an event in the notifier (in memory and database).
-o notifier.events.unack -i {event_id}

notifier.events.unack_n UnAck one or more events in the notifier (in memory and
database).
-o notifier.events.unack_n -i {event_id1,event_id2}

notifier.events.unackall UnAcks ALL events in the notifier (in memory and database).
-o notifier.events.unackall

notifier.mailserver.test Tests the a SMTP mail server with the specified parameters.
The test does not actually send an e-mail but it does connect to
the server and login. Parameters:

-smtp_server {ipaddress | hostname} - the server to test
-smtp_username {username} - the username to login with
-smtp_password {password} - the password to use for login

-o notifier.mailserver.test -v smtp_

server={hostname},smtp_username={username},smtp_

password={password}

	 API REFERENCE  |	 59

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

OPERATION NAME OPERATION DESCRIPTION and EXAMPLES

notifier.users.add Adds a user to the notifier users list. Must pass the username
and at least 1 parameter. Parameters include ‘email_address’
(in order to get email notifications), ‘trap_address’ (in order to
send a SNMP TRAP), ‘database’ to log to database.
-o notifier.users.add -i {username} -v {email_

address={email_address},trap_address={trap_

address},database=0}

notifier.users.remove Removes a user from the notifier users list. Must pass the
username.
-o notifier.users.remove -i {username}

report.results.clear Clears the results of a report from cache. All report results are
stored in cache for a period of 1 poll period longer than the
timeframe of the report (running a report over the same time
period does not generate a new report - it returns the report
that has already been generated).

-o report.results.clear -i {report_id}

report.results.get Gets the results of a report
-o report.results.get -i {report_id}

report.schedule.add Schedules a report, and returns a report_id. The ‘report.
results.get’ must be called with the returned report_id in order
to retrieve the results. Object must be the report name and
the parameters passed include a set of arguments describing
the report. For more information, please see the REPORT
ENGINE section of this document.

-o report.schedule.add -i {report_name} -v {args}

report.schedule.cancel Cancels a scheduled or running report.
-o report.schedule.cancel -i {report_id}

60	 |  API REFERENCE

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

OPERATION NAME OPERATION DESCRIPTION and EXAMPLES

system.accesstypes.updated Notifies the system that the accesstypes have been updated
and the engine will reload them from the database.
-o system.accesstypes.updated

system.alive Tells if system is alive and well, responding with an “0|OK”.
-o system.alive

system.component.details Gets the detailed state of a specific component of the engine.
Only 1 component can be specified at a time (or ALL is OK as
well). Please see components above.
-o system.component.state -v DE

system.component.state Gets the overall state of a specific component of the engine.
Only 1 component can be specified at a time (or ALL is OK as
well).

ALL = ALL
MRM = Monitor Results Manager
PE = Poller Engine
DE = Discover Engine
OE = Output Engine
NE = Notifier Engine
RAE = Results Analysis Engine
SP = Symbol Processor
PM = Ping Monitor
PB_SNMP = Poller Blade (SNMP)

-o system.component.state -v ALL

system.config.read Tells the system to read in a configuration file. Configuration
will be merged with the running configuration. If no file is
specified, the default will be used ‘monitor.cfg.xml’.
-o system.config.read -v {file}

system.config.write Tells the system to write the running configuration out to a
configuration file. All data will be written to ‘monitor.cfg.xml’
by default, unless a file is specified.
-o system.config.write -v {file}

	 API REFERENCE  |	 61

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

OPERATION NAME OPERATION DESCRIPTION and EXAMPLES

system.debug.database Only run when instructed by support. Launches a database
debugging session, but locks out the engine from making
changes to it while the session is running. This should not be
performed on a production machine, as the monitorengine
must be shut down in order to reset everything. The database
can be queried normally while the engine runs, for more
information please see the DATABASE chapter.
-o system.debug.database

system.discover Schedules a discovery and adds it to the queue. If nothing is
in the queue, it will execute immediately. Arguments to be
specified in name=value pairs, comma separated.

Arguments:

access_id - use a specific access_id for the access parameters
auth_password - the authentication password
auth_proto - the authentication protocol (NONE, MD5, SHA)
context - the SNMPv3 context name
community - the SNMP community string (default)
community_read - the SNMP community string (read-only)
community_write - the SNMP community string (read-write)
host - specifies a single host to process
jobid - when set to 1, the discover jobid is returned.
priv_proto - the privacy protocol (NONE, CBC_DES)
priv_password - the privacy password
port - port to query on (SNMP uses 161 by default)
profile_id - execute a pre-defined discover profile
range - specifies the range of IP addresses to process	
type - type of discover (i.e. snmp, icmp, ipmi, etc.)
username - the username for discovery
version - version of SNMP to use (SNMP only)

-o system.discover -v {arg1=value1,arg2=value2}

62	 |  API REFERENCE

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

OPERATION NAME OPERATION DESCRIPTION and EXAMPLES

system.discoverstats Returns realtime statistics for the discover process.
-o system.discoverstats

system.dispatchers.start Starts the poller dispatchers (i.e. enables polling).
-o system.dispatchers.start

system.dispatchers.stop Stops the poller dispatchers (i.e. disables polling).
-o system.dispatchers.stop

system.exceptions.add Adds an exception definition to the system. Arguments to be
specified in name=value pairs, comma separated. For more
information, please see the EXCEPTIONS chapter in this
document.

Arguments:

action - notify, watch_normal, watch_realtime
compare_object - baseline_recent, baseline_running, value_current,
value_last, value_max, value_min, value_sum
compare_type - less_than, greater_than, range, contains, equal, notequal
compare_value - the value to compare to
exception_text - the description text of the exception
monitor_id - the ID of the monitor to specifically create this exception for
monitor_type - the monitor type for this exception
object_id - object to watch
reset_count - number of times polled value must not trip the exception
realtime_poll_period - frequency of realtime polling action in ms
severity_id - the severity of the exception
trip_count - number of times value must trip exception to trigger action

-o system.exceptions.add -v {arg1=value1,arg2=valu

e2,arg3=value3,arg4=value4}

	 API REFERENCE  |	 63

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

OPERATION NAME OPERATION DESCRIPTION and EXAMPLES

system.exceptions.delete Delete the exception definition including all events derived by
a matching exception from the system, by either the monitor_
id or the exception_key.
-o system.exceptions.delete -v exception_

key={exception_key}

system.exceptions.updated Tells the system to reload exception definitions for all
exceptions based on a specific monitor_type (‘type’) or a
specific exception db_id (‘id’).
-o system.exceptions.updated -v type={type}

system.gc Forces garbage collection.
-o system.gc

system.groups.updated Tells the system to re-read the groups from the database.
-o system.groups.updated

system.jobs.cancel Cancels a running or queued job
-o system.jobs.cancel -i {job_id}

system.jobs.list Lists the current jobs running and queued.
-o system.jobs.list

system.license.info Displays the current license information
-o system.license.info

system.license.load Attempts to load the current license(s)
-o system.license.load

system.license.usage Displays the current license usage
-o system.license.usage

64	 |  API REFERENCE

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

OPERATION NAME OPERATION DESCRIPTION and EXAMPLES

system.logging.component Specifies which system component to enable logging for.
Unlike the ‘state’ command, multiple components can be
specified here.

ALL = ALL
MRM = Monitor Results Manager
PE = Poller Engine
DE = Discover Engine
OE = Output Engine
NE = Notifier Engine
RAE = Results Analysis Engine
SP = Symbol Processor
PM = Ping Monitor
PB_SNMP = Poller Blade (SNMP)

-o system.logging.component -v DE,RAE,SP

system.logging.database Enables/Disables detailed debugging information in the
database (e.g. SQL queries, reponses, etc.)
-o system.logging.database -v true

system.logging.level Sets the logging level (1-10). 1 least, 10 is most.
-o system.logging.level -v 5

system.logging.priority Sets the logging priority. INFO is the default. Valid values are
ERROR, INFO, WARN, DEBUG.
-o system.logging.priority -v DEBUG

system.pollerblades.reset Resets the poller blades. Only use with tech support.
-o system.pollerblades.reset

system.pollerstats Returns realtime statistics for the polling process.
-o system.pollerstats

system.properties.delete Deletes a system property
-o system.properties.delete -i {property_name}

system.properties.get Returns the property value for the property requested.
-o system.properties.get -i {property_name}

	 API REFERENCE  |	 65

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

OPERATION NAME OPERATION DESCRIPTION and EXAMPLES

system.properties.list Lists all the system properties and their values
-o system.properties.list

system.properties.rename Renames a system property
-o system.properties.rename -i {old_property_

name,new_property_name}

system.properties.set Set a property value for the property specified.
-o system.properties.set -i {property_name} -v

“{property value}”

system.properties.write Writes the property values out to the engineconfig.properties
property file.
-o system.properties.write

system.relations.reset Recalculates all system relations.
-o system.relations.reset

system.shutdown Shuts down the system.
-o system.shutdown

system.status Displays the current system status
-o system.status

system.threads.list Displays all threads in use and their states
-o system.threads.list

system.threads.summary Displays a summary of all threads in use and states
-o system.threads.summary

system.traplisteners.start Starts the Trap Manager Listeners
-o system.traplisteners.start

system.traplisteners.stop Stops the Trap Manager Listeners
-o system.traplisteners.stop

66	 |  API REFERENCE

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

OPERATION NAME OPERATION DESCRIPTION and EXAMPLES

system.trapstats Displays the statistics for Trap Manager Service
-o system.trapstats

system.types.reset Resets the Monitor Types and re-reads all currently known
types into the system. By default does not read newly added
types into the system.
-o system.types.reset

system.version Returns the engine version.
-o system.version

system.version.web Returns the web-engine version, if running
-o system.version.web

system.webserver.restart Restarts the webserver.
-o system.webserver.restart

trapmgr.filters.deleted Tells Trap Manager Service (TMS) that a specific filter was
deleted. TMS will delete that filter from the db and memory
and remove it from the processing trees.
-o trapmgr.filters.deleted -i {filter_id}

trapmgr.filters.read Tells Trap Manager Service (TMS) to read a trap-filters file. If
no file is specified, it will default to the system file.
-o trapmgr.filters.read -i {filter_file}

trapmgr.filters.updated Tells Trap Manager Service (TMS) that a specific filter was
updated. TMS will update that filter in the db and memory and
consequently update the processing trees.
-o trapmgr.filters.updated -i {filter_id}

	 API REFERENCE  |	 67

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

Common API examples

Delete an agent:
xmlApiClient –o agent.delete –i <agent-id>

Delete a monitor:
xmlApiClient –o monitor.delete –i <monitor-id>

Get the monitor frequency:
xmlApiClient –o monitor.frequency.get –i <monitor-id>

Set the monitor frequency to 30 seconds:
xmlApiClient –o monitor.frequency.set –i <monitor-id> -v 30000

Get the monitor enabled status:
xmlApiClient –o monitor.enabled.get –i <monitor-id>

Set the monitor enabled status to false:
xmlApiClient –o monitor.enabled.set –i <monitor-id> -v false

Launch discover with a specific range:
xmlApiClient –o system.discover -v range=192.168.1.1-254

Launch discover with a specific range and different SNMP community string:
xmlApiClient –o system.discover -v range=192.168.1.1-254,community=test

Launch discover for a specific IP and port:
xmlApiClient –o system.discover -v range=192.168.1.80,port=5000

Set the system parameter snmp_community_string to private
xmlApiClient –o system.config.set –i snmp_community_string -v private

Add a Notifier user to the system and specify email address:
xmlApiClient –o notifier.users.add –i <username> -v email_
address=<email>

mailto:email=nick@hotmail.com
mailto:email=nick@hotmail.com

68	 |  API REFERENCE

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

Update notifier user in the system specifying email and trap IP addresses:
xmlApiClient –o notifier.users.add –i <username> -v email_
address=<email>, trap_address=<trap-ip-address>

Acknowledge an event in the system:
xmlApiClient –o notifier.events.ack –i <event_id>

Clear an event in the system:
xmlApiClient –o notifier.events.clear –i <event_id>

Update exceptions in the system for the snmp-mib2-if monitor-type:
xmlApiClient.exe -o system.exceptions.updated -i type -v snmp-mib2-if

Update a community string:
xmlApiClient –o access.community.set –i <access_id> -v read_community/
write_community

	 EXTENDING THE ENGINE WITH META-DATA  |	 69

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

Monitor Configuration

MonitorEngine needs to be told which things to monitor, and how to monitor them. This
section will explain how to update the system with the set of things to be monitored, as
well as how to define custom monitoring types.

ConfigUpdate File
To tell MonitorEngine what to monitor, a configuration update file must be created.
The default filename for the configuration update file is monitor.cfg.xml.

As this is an XML file, we have included a schema describing the structure. The schema
describing the actual format can be found in the ‘system’ subdirectory from the install
location. The default locations are listed below.

Linux: “./system/cConfigUpdate.xsd”
Windows: “.\system\cConfigUpdate.xsd”

The configuration update file has a basic structure like this:

<ConfigUpdate>
	 <agentConfig>
		 <agent_ip/>
	 </agentConfig>
	 <accessConfig>
		 <access_type/>
	 </accessConfig>
	 <monitorConfig>
		 <monitor/>
		 <monitor/>
		 <monitor/>
		 <monitor/>
	 </monitorConfig>
</ConfigUpdate>

An example file can be found in the main directory of a MonitorEngine install, it is called
monitor.cfg.xml.example. There are three main parts, the agentConfig, accessConfig, and
monitorConfig. Each section can handle an unlimited number of agents, access types,
and monitors, respectively.

70	 |  EXTENDING THE ENGINE WITH META-DATA

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

AgentConfig
The agentConfig lists all the IP addresses or hostnames that will be monitored. Agent IDs
must be numbered and unique. A section for the agentConfig with 2 agents could look
like this:

	 <agentConfig>
		 <agent_ip agent_id=”1”>
			 <ipaddress>192.168.1.1</ipaddress>
			 <ping>true</ping>
		 </agent_ip>
		 <agent_ip agent_id=”2”>
			 <ipaddress>192.168.1.5</ipaddress>
			 <ping>true</ping>
		 </agent_ip>
	 </agentConfig>

AccessConfig
The accessConfig contains a list of protocol/port based access types, and for each of
those types, the details used to define access. A section with one SNMP access type for
the accessConfig would look like this:

	 <accessConfig>
		 <access_snmp port=”161” access_id=”1”>
			 <snmp_version>2</snmp_version>
			 <community_read>public</community_read>
			 <community_write>private</community_write>
		 </access_snmp>
	 </accessConfig>

MonitorConfig
The monitorConfig contains a list of monitored elements.

	 EXTENDING THE ENGINE WITH META-DATA  |	 71

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

Monitor section attributes
The monitor section of the monitor config has several attributes:

agent_id – points to the agent (required)
access_id – points to the access type (required)
monitor_type – points to the monitor type (required)
frequency – the frequency in milliseconds to polls this monitor (optional)
schedule_group – the scheduled polling group that this monitor belongs to (optional)
debug – show debugging for this monitor when monitor debug is on (optional)

MonitorConfig sample
A monitorConfig which monitors the first 3 interfaces from each router agent using
SNMP may look like this:

	 <monitorConfig>
		 <monitor agent_id=”1” access_id=”1” monitor_type=”snmp-mib2-if”>
			 <index id=”1”>1</index>
		 </monitor>
		 <monitor agent_id=”1” access_id=”1” monitor_type=”snmp-mib2-if”>
			 <index id=”1”>2</index>
		 </monitor>
		 <monitor agent_id=”1” access_id=”1” monitor_type=”snmp-mib2-if”>
			 <index id=”1”>3</index>
		 </monitor>
		 <monitor agent_id=”2” access_id=”1” monitor_type=”snmp-mib2-if”>
			 <index id=”1”>1</index>
		 </monitor>
		 <monitor agent_id=”2” access_id=”1” monitor_type=”snmp-mib2-if”>
			 <index id=”1”>2</index>
		 </monitor>
		 <monitor agent_id=”2” access_id=”1” monitor_type=”snmp-mib2-if”>
			 <index id=”1”>3</index>
		 </monitor>
	 </monitorConfig>

72	 |  EXTENDING THE ENGINE WITH META-DATA

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

Monitor Types
MonitorEngine out-of-the-box comes with a set of pre-defined monitor files. They are a
set of XML files that define the way the MonitorEngine needs to collect data.

Monitor Type system files
Monitor Types properties and relations are defined by a set of 3 XML files in the system
subdirectory named monitor-types.xml, monitor-descriptions.xml, monitor-objects.xml.

Please see the cMonitorType.xsd schema file in the system directory for detailed
information about file structure, and what values are permissable and supported.

The monitor-objects.xml file contains one or more descriptive entries for each object
referenced by the monitor-types.xml file (one for each supported language).

The monitor-description.xml file contains one or more descriptive entries for each
monitor type defined in the monitor-types.xml (again, one for each language).

The monitor-types.xml file defines the objects for each monitor type, as well as any
relations to other monitor types. The basic format of this file is this:

<MonitorTypes>
	 <monitor_type>
		 <objects>
			 <object/>
		 </objects>
		 <relations>
			 <relation/>
		 </relations>
		 <exceptions>
			 <exception/>
		 </exceptions>
	 </monitor_type>
</MonitorTypes>

There can be unlimited monitor type sections. Monitor Types are hierarchical, and base
types must be defined before descendents.

	 EXTENDING THE ENGINE WITH META-DATA  |	 73

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

Monitor Objects
These are the actual objects defined in the monitor type definition. It defines the name of
an object, how it will be stored, how data will be treated, etc. An example of an object
definition for a monitor type could be:

<object id=”bytes_in” storage_id=”c1” storage_type=”counter”/>

The storage_id refers to the external database column that data will be stored in. Storage_
type refers to the storage methodology used (i.e. gauge means data will be multiplied
over the poll interval, counter means that the delta will be used over the poll interval,
and raw means that there will be no transformation).

Monitor Relations
Relations are a nifty way to relate one monitor type to another, and then the system can
do relational calculations on data (e.g. aggregations and sums, averages, min, max, etc.).
One could relate interface or trunk monitor types to the router monitor type, and then
look at total interface utilization or average utilization over the router, over time. Some
relation examples could be:
	 <relation id=”interface” type=”agent”/>
	 <relation id=”memory” type=”agent”/>
	 <relation id=”cpu” type=”agent”/>

Monitor Exceptions
Exceptions define triggers for the Notifier based on thresholds, polled or calculated
values, etc. If there are exceptions to be defined for a particular type, do it here:
	 <exception text=”Printer Toner Low” param=”prtPercentageConsumed” compare_		
value=”90” compare_type=”greater_than” compare_object=”value_current” action=”notify”
severity=”warning” trip_count=”1” reset_count=”10” realtime_poll_period=”0”/>

74	 |  EXTENDING THE ENGINE WITH META-DATA

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

Monitor Definition Files

The monitor file definitions tell the engine how to monitor something by specifying the
protocol to use, the objects to query for, and the expressions to use for calculations. In
addition exceptions can be defined. Every monitor file is based on a monitor-type.

All the monitor definitions for the base installation are XML files that live in the monitor
directory. This directory can be changed by changing the system property ‘monitor_file_
location’, please see the PROPERTIES section of the document.

All of these XML definition files are described by the master schema. Please see the
cMonitorType.xsd schema file in the system directory for detailed information about
file structure, and what values are permissable and supported.

The basic structure of the monitor definition file can be found described below.
Each MonitorType definition file can have up to 5 sections, Init, Declares, Queries,
Expressions, and Exceptions. The only required sections are the first three.

Init section
Init describes which type in the system this monitor type represents, the ASN.1 MIB
from which to get OID definitions, and the default access type used for getting data.
Following is an example init section.

	 <init>
		 <monitor_type>snmp-mib2-if</monitor_type>
		 <default_mib>IF-MIB</default_mib>
		 <default_access_type>snmp</default_access_type>
	 </init>

	 EXTENDING THE ENGINE WITH META-DATA  |	 75

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

Declare section
Declare section defines OIDS, constants, and index values for use during polling. An
example of a declare section could be:
	 <declares>
		 <declare id=”ifSpeed” type=”oid”>1.3.6.1.2.1.2.2.1.5</declare>
		 <declare id=”ifHighSpeed” type=”oid”>1.3.6.1.2.1.31.1.1.1.15</declare>
		 <declare id=”ifOperStatus” type=”oid”>1.3.6.1.2.1.2.2.1.8</declare>
		 <declare id=”ifLastChange” type=”oid”>1.3.6.1.2.1.2.2.1.9</declare>
		 <declare id=”ifInDiscards” type=”oid”>1.3.6.1.2.1.2.2.1.13</declare>
		 <declare id=”ifInErrors” type=”oid”>1.3.6.1.2.1.2.2.1.14</declare>
		 <declare id=”ifInUnknownProtos” type=”oid”>1.3.6.1.2.1.2.2.1.15</declare>
		 <declare id=”ifOutDiscards” type=”oid”>1.3.6.1.2.1.2.2.1.19</declare>
		 <declare id=”ifOutErrors” type=”oid”>1.3.6.1.2.1.2.2.1.20</declare>
		 <declare id=”ifHCInOctets” type=”oid”>1.3.6.1.2.1.31.1.1.1.6</declare>
		 <declare id=”ifInOctets” type=”oid”>1.3.6.1.2.1.2.2.1.10</declare>

<declare id=”$ifIndex” type=”index”>1</declare>
	 </declares>

Query Section
Queries define the actual data collection details for the monitor type. There is a maximum
of 128 queries per monitor type. There is a default, and one or more optional alternate
query methods. The query class must be specified, as well as the query alias, which will
be used for reference by subsequent queries and/or expression calculations. Following is
a simple query for the object operstatus. It has been classified as a “status” variable by
using the “class” attribute. It uses a SNMP GET method to query ifOperstatus at ifIndex:
			
<query>
	 <attributes alias=”operstatus” class=”status”/>
	 <default method=”snmp_get”>ifOperStatus.$ifIndex</default>
</query>

76	 |  EXTENDING THE ENGINE WITH META-DATA

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

Following is a complex query for the object speed. It has been classified as a utilization
variable. The default query is for the ifSpeed object, but if the ifHighSpeed object is
present, this will be chosen instead. Units are specified by the “units” attribute.

<query>
	 <attributes alias=”speed” class=”utilization”/>
	 <default method=”snmp_get” units=”bps”>ifSpeed.$ifIndex</default>

<alternate method=”snmp_get” units=”mbps”>ifHighSpeed.$ifIndex </alternate>
</query>

Following is another complex query, that tell the MonitorEngine to poll the ifHCInOctets
object if the value of the speed object (previously defined and polled), is greater than the
value of 20Mbps. If not, the default ifInOctets object will be polled.
<query>

<attributes alias=”bytes_in” class=”utilization”/>
	 <default method=”snmp_get”>ifInOctets.$ifIndex</default>

<alternate method=”snmp_get” param=”speed” compare=”greater_than”
	 value=”20000000”>ifHCInOctets.$ifIndex
</alternate>

</query>

Finally, a query for non-unicast packets in will result in aggregation of results of two
high-capacity variables, ifHCInMulticastPkts and ifHCInBroadcastPkts, if the value of
speed is greater than 640Mbs. If not, the default, ifInNUcastPkts, will be queried.
<query>

<attributes alias=”packets_nucast_in” class=”packets” alt=”all”/>
	 <default method=”snmp_get”>ifInNUcastPkts.$ifIndex</default>
	 <alternate method=”snmp_get” param=”speed” compare=”greater_than” 			
		 value=”640000000”>
		 ifHCInMulticastPkts.$ifIndex
	 </alternate>
	 <alternate method=”snmp_get” param=”speed” compare=”greater_than”
		 value=”640000000”>
		 ifHCInBroadcastPkts.$ifIndex
	 </alternate>
</query>

	 EXTENDING THE ENGINE WITH META-DATA  |	 77

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

Expressions Section
Expressions describe to the MonitorEngine how the collected data will be transformed.
Very often it is just the query object itself. But, it can also be any mathematical
expression involving any of the query objects in the current or a related monitor type.
<expression object_id=”operstatus”>operstatus</expression>

To get speed_in and speed_out, set them each to the polled speed:
<expression object_id=”speed_in”>speed</expression>
<expression object_id=”speed_out”>speed</expression>

Then, to get total speed, sum speed_in and speed_out:
<expression object_id=”speed_total”>speed_in + speed_out</expression>

The following expression defines the value for the object utilization_line_in, which is
the utilization for the interface at the time of the poll. It multiples bytes_in by 8 bits/byte
and then by 100 (for percentage) and then divides by the product of poll time and speed.
_pollTimeSecs is an internal variable.
<expression object_id=”utilization_line_in”>
	 (bytes_in * 8 * 100) / (_pollTimeSecs * speed_in)
</expression>

For calculation of the total bytes in for all router interfaces on a router, use the relation_id
and transform attributes:

<expression object_id=”bytes_in” relation_id=”interface” transform=”sum”>bytes_in

</expression>

Complex expressions with multiple parts can be specified, including setting of variables
inline and multiple if/then/else statements.
<expression object_id=”scale_test”>
	 returnValue1=X;returnValue2=Y;if (scale=10) then returnValue1 else returnValue2;
</expression>

78	 |  EXTENDING THE ENGINE WITH META-DATA

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

Reserved Keywords
The following are special, reserved keywords in the Symbol Processor:

_pollTimeSecs - the number of seconds in the poll period
_pollTimeMSecs - the number of milliseconds in the poll period
_availability - the availability of the monitor during the current poll period
_latency - the latency of the monitor over current poll period
_ kwh_hourly_cost - hourly cost per kilowatt hour over current poll period

Built-in Functions
There are a number of real-time built-in processing functions in the base engine, which
are accessible during expression evaluation. To call a built-in function, simply use the
name of the function and specify the arguments. Function names always start with an
underscore (“_”), as do reserved keywords, and they end with the string “Function”.

<expression object_id=”custom_function_call”>_thisFunction(arg1,arg2)</expression>

RegExpFunction
_regExpFunction - this function allows values to be pulled out of a polled value, using
a regular expression, and return it to the expression evaluator. Values can be numbers or
strings.

usage: _regExpFunction(value,expression,index)

e.g.:

assuming your polled value is “milliAmpsAt42v”, and you wanted to get the number of
volts specified in the string, one could come up with an expression:

_regExpFunction(“milliAmpsAt42v”,”(.*)(AmpsAt)([0-9]*)”,3) = 42

	 EXTENDING THE ENGINE WITH META-DATA  |	 79

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

UnitTypeFunction

_unitTypeFunction - this function converts the value from using one unit type to another
(e.g. milliseconds to seconds, or millamps to amps, or megabytes to bytes).

usage: _unitTypeFunction(value,units)

Valid values for units are: YOCTO, ZEPTO, ATTO, FEMTO, PICO, NANO, MICRO,
MILLI, CENTI, DECI, NONE, DEKA, HECTO, KILO, MEGA, GIGA, TERA, PETA,
EXA, ZETTA, YOTTA

e.g.:

assuming a polled value = 1000, in milliamps, and you want to convert to amps:
_unitTypeFunction(1000, MILLI) = 1 amp

ValueMapFunction

_valueMapFunction - this is a function that will map a polled value to another value and
return it to the expression evaluator. Values need not be numbers, they can be strings as
well.

usage: _valueMapFunction(inputValue,nullValue,test1,test2,test3)

e.g.:

assuming a polled value = 300, there is a match (300=5), so the value is 5...
_valueMapFunction(300,66,100=1,200=2,300=5,400=10) = 5

assuming a polled value = 500, there is no match, so result is nullValue which is 66...
_valueMapFunction(500,66,100=1,200=2,300=5,400=10) = 66

80	 |  EXTENDING THE ENGINE WITH META-DATA

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

Custom Functions
Custom functions can be easily be written in Java and once compiled and put into the
classpath, will be loaded and executable at runtime. To learn how to extend the system
with your own custom functions for expression evaluation, please inquire about our
SDK.

Please contact us by calling 617-475-5209 or using the form:
http://www.oidview.com/contact.html

http://www.oidview.com/contact.html

	 EXTENDING THE ENGINE WITH META-DATA  |	 81

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

Discover Files
During the discover process, certain files are loaded and executed depending on the
agent being discovered. To extend the discover functionality, these files need to be
modified and/or created. All files for the discovery process must be placed in the /
discover directory. There are two special files, services.xml, which controls TCP service
discovery, and snmp-mib2-rules.xml, which controls special rules concerning MIB2
behavior during the discover process. The rest of the files follow a specific format and
have a very specific structure.

Please see the cMonitorType.xsd schema file in the system directory for detailed
information about structure, and what values are permissable and supported.

Filename format
All filenames in the discover directory need to follow a specific nomenclature, as the
system programatically executes and attempts to discover items in the network.

In general, the following filename format is used: {protocol}-{identifier}.xml

The {protocol} is representative of the discover protocol used. Example, ‘snmp’, ‘ipmi’,
‘wmi’, etc. could be used as the protocol (passed in as ‘type’ during the schedule discover
job request), and will be specified for the file prefixes.

The {identifier} can ether be the enterprise number, the feature-set, or possibly a MIB
definition or description.

The majority of them are like this:
snmp-{enterprise-number}.xml
snmp-{enterprise-number}-{feature}.xml

During the discover process, if the discover blade (e.g. SNMP) is looking at a Cisco
Switch, it will load up snmp-9.xml (since Cisco’s enterprise number is 9), and follow the
rules inside that file. Note - a file can fork to other files, that do not have to follow the
same filename format or path.

82	 |  EXTENDING THE ENGINE WITH META-DATA

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

File structure
The discover file structure consists of an init section, a declares section, and a rules
section. See schema object DiscoverRules. Here is the example file structure:

<DiscoverRules>
	 <init>
		 <prefetches>
			 <prefetch/>
			 <prefetch/>
		 </prefetches>
	 </init>
	 <declares>
		 <declare/>
		 <declare/>
	 </declares>		
	 <rules>
		 <rule>
			 <queries>
				 <query/>
				 <query/>
			 </queries>
			 <logic>
				 <atom/>
				 <atom/>
			 </logic>
		 </rule>
	 </rules>

</DiscoverRules>

The init section contains something called “prefetches”, which collect pre-defined data
from the agent, and is executed once per agent discovery.

The declares are executed once per file load. Declares define variables, constants, OIDs,
and indices, etc. to be used during the discover process.

The rules are executed each time an agent is discovered, and after the init section is
processed. A rule can exist by itself, or can be defined by a number of queries and logic
atoms.The behavior is completely customizable and we will discuss in more detail below.

	 EXTENDING THE ENGINE WITH META-DATA  |	 83

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

Prefetches

Prefetches help speed up the discover process. Generally, they scan an entire table or a
single variable for a specific table, and that data is later used during lookup for elements
that will be created as a result of walking an OID or finding instances in that table.

Each prefetch follows the following structure:

<prefetch alias=”$IFTYPE” mib=”IF-MIB”>ifType</prefetch>

This particular prefetch allows the discover process to know the ifTypes for each index it
is processing WITHOUT having to go back to the wire to do an additional SNMP GET
request.

The ‘alias’ is the variable name that will be used later on in the rule during the discover
process. The ‘mib’ is the name of the MIB or identifying group of statistics that this data
will be associated with. The actual value (in this case it’s ‘ifType’), is the representative
object that will be retrieved during the prefetch phase.

Declares

Declares specify different object types to be used during the discover process. There are
5 types of declares: system, oid, constant, variable, index.

system - special type of variable, to be automatically populated by the discover process.
Some valid values are _SYSNAME (to get the sysname from the system table), and
_CLASS (to specify the class type of the object being discovered).

oid - a variable which defines an OBJECT IDENTIFIER (re ASN.1 MIBs). OIDs are
treated in a special way during the discover process.
constant - a static constant value that will not change during discovery

variable - a variable that has no initial setting but will be used dynamically

index - a special variable that represents an index into a table

84	 |  EXTENDING THE ENGINE WITH META-DATA

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

Some declaration examples:

<declare id=”_SYSNAME” type=”system”/>
<declare id=”ifNumber” type=”oid”>1.3.6.1.2.1.2.1</declare>
<declare id=”$CEMP_MEM_POOL_INDEX” type=”constant”>1</declare>
<declare id=”$D_IFTYPE” type=”variable”/>
<declare id=”$cpmCpuTotalIndex” type=”index”>1</declare>

Rules

Rules are the actual engine of the discover process (please see schema ‘rule’ and for
snmp rules, ‘SNMPType’). All discovery functionality can be achieved by using the rule-
based language, no extra perl, tcl, or shell scripting is needed. Each ‘rule’ is comprised of
attributes, and optionally ‘query’ and ‘logic’ elements.

The rule attributes are as follows:

id - the identifier (unique) for this rule
class - physical class type for elements to be created (see schema PhysicalClassType)
monitor_type - the monitor-type of the element that will be created
index_oid - the OID to walk in order to determine which instances to base creation
pattern_name - the pattern to use for element names
pattern_key - the pattern to use for the key
prefetch_mib - the mib to use for prefetches
virtual - is this to be a virtual element
hidden - only execute when directly referenced
singleton - only execute once per agent
index_scalar - is this a scalar element
indexes_off - do not process indexes
stop - stop if this rule is true

A rule example:

<rule id=”cable-upstream” class=”port_logical” monitor_type=”snmp-
cable-upstream” index_oid=”ifType” pattern_name=”_SYSNAME-port-

$IFDESCR” prefetch_mib=”IF-MIB”>

	 EXTENDING THE ENGINE WITH META-DATA  |	 85

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

Rule Queries
The rule query is a query that is executed in the protocol named by the parent file,
using the attributes in the query (please see schema QueryOidType). There can be an
unlimited number of queries, but generally, you want to use as few queries as possible.
Each query must return a value of TRUE in order to continue processing a rule, unless
otherwise marked as ‘optional’. Optional queries are useful when needing to get
additional information for naming or helping to determine which path down the decision
tree may be followed.

The query attributes are as follows:

alias - the id for this query and also the variable to which query responses are assigned
oid - the object identifier that is queried
query_type - the type of query (i.e. get, getnext, etc. see schema QueryMethodType)
match_value - the value to match
execute - the script, logic atom or function to execute
execute_type - type of execute (i.e. atom, rule, shell_cmd, see DiscoverExecuteType)
optional - (true/false). If not optional and query fails, discover will fail for this rule

A query example:

<query alias=”$PHYS_DESCR” oid=”entPhysicalName.$TOTALPHYSINDEX”
	 query_type=”snmp_get” optional=”true”/>

Rule Logic Atoms

Logic atoms (please see schema object DiscoverLogicAtom) are executed either by
being called directly from a corresponding or referencing query item in the same rule,
or in round-robin fashion simply because they are listed in the logic section of the
same rule. All logic atoms in a particular ‘rule’ group must be executed and all must
pass a return value of ‘true’ except for those that are marked as ‘optional’ or marked
as ‘subatoms’. Once all atoms have been processed (or a ‘stop’ has been hit), the AND
results of all the atoms will be considered, and the monitor will be created for that ‘rule’
if there was an overall ‘true’ value passed back (i.e. all atoms returned true).

86	 |  EXTENDING THE ENGINE WITH META-DATA

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

The logic atom attributes are as follows:

alias - the id for this atom as can also be the variable to which the result is stored
input_type - type of input for atom (see schema DiscoverVariableInputType)
input - the actual input (could be a query result, function, etc.)
function_type - the type of function (see schema DiscoverVariableFunctionType)
function - the function itself
regexp_parameter - if regexp is being used, specify pattern here
stop - should discover stop here if this atom executes and returns true
execute_type - type of atom execution (see schema DiscoverExecuteType)
execute - the actual thing/script to execute
sub_atom - (true/false) - specifies whether this atom is a sub-arom (i.e. can it be called
directly by an execute command or is it the child of a parent atom)
optional - (true/false) - if set to true, it is not conditionally required to return true	
	
Some logic atom examples:

An atom that takes the split function, uses the index OID as the value to split, and returns
the first index into the alias variable $cpmCPUTotalIndex:

<atom alias=”$cpmCPUTotalIndex” input_type=”oid” input=”rule” function_
type=”split” function=”1”/>

An atom that takes the result of the walked instance, and sets the variable
“$TOTALPHYSINDEX” as the result:

<atom alias=”$TOTALPHYSINDEX” input_type=”result” input=”rule”
function_type=”set”/>

An atom that takes the contents of the variable “$PHYS_DESCR” and sets a new
variable “$CPUNAME”:

<atom alias=”$CPUNAME” input_type=”result” input=”$PHYS_DESCR”
function_type=”set”/>

	 EXTENDING ENGINE WITH CODE  |	 87

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

Extending the Engine using Code

In addition to all the meta-data configuration that can be implemented with the system,
there is also core code and several engine components that can be extended.

Extendable Components
Currently the areas of the system that can be extended include the discover and polling
engines (by extending or creating new blades), output engines (for new types of
databases and/or data destination), custom formulae in the analysis engine, and various
file and configuration readers.

Get the SDK
We have an SDK that is currently available as part of our OEM program. Included in the
SDK are documented, detailed and working code samples for extending each part of the
system. To find out more, please contact us by calling 617-475-5209 or using the form:
http://www.oidview.com/contact.html

http://www.oidview.com/contact.html

88	 |  DATABASE

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

Database

Supported Databases
Out of the box, Jaguar SXE supports an embedded version of H2, MySQL, and
SQLServer. Some limited support for Oracle was added, but needs further work.

Performance
Performance testing has been conducted using the MySQL Community version database.
Bulk data insertion for 300,000 interfaces (over 10,000,000 datapoints), was repeatedly
performed in 5 minute intervals in under 30s, using standard IDE 500Gb drives running
at 7500rpm.

Administration
To administer the embedded H2 database, please follow the instructions in the setup
chapter of this guide under the section ‘Database Web Interface’. Administration for the
other databases is handled by their own respective tools.

Automated Rollups
Data is stored in the database according to the configuration settings. By default, raw data
will be stored for 7 days and rolled up data will be stored hourly and daily. Data is rolled
up via an automatic hourly job and the polled data from the raw data tables are averaged
into an hourly table. Consequently, once a day, the hourly data is rolled up into a daily
datatable.

Database Schema
The full database schema (for all supported databases), can be found on the installation
disk/media in the src/database directory, in the form of SQL files. In addition, all update
SQL files are present in the same directory.

	 DATABASE  |	 89

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

Data Tables
The schema template for tables performing data storage is in a table called ‘monitor_
stats’. All data tables are dervied from this base table. All tables storing data are also
indexed in a configuration table named ‘monitor_stats_tables’. This table contains
information about each data table (period, time opened, time closed, type of data, etc.).
Finally, each data table is named according to the following pattern:

z{createtime}_{period}_{type}

where createtime is in milliseconds, period is the poll period for raw data tables (or the
rollup period for rollup tables), and type describes the type of data table.

type = 0, raw data or rollup data (avg)
type = 1, realtime data
type = 3, rollup data (min)
type = 4, rollup data (max)

Examples of data table names:

Z1352862000000_60000_0 - raw polled data (60s)
Z1352610000000_3600000_4 - hourly rolled up data (max)
Z1351656000000_86400000_0 - daily rolled up data (avg)

90	 |  DATABASE

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

Configuration Tables
All configuration information can be retrieved from the database using standard SQL.
Following is a list of all the table names and descriptions. For more detail, please see the
schema for reference.

TABLE NAME DESCRIPTION

access_cfg Table of top-level access information

access_cfg_snmp Table describing access config for SNMP

access_cfg_snmpv3 Table describing access config for SNMPv3

access_profile Table describing access profiles for discovery

access_profile_group Table grouping access profiles

agent_cfg Describes agent configuration

agent_info Describes detailed information about each agent

alert_severities Severities for alerts, language specific

alert_types Describes different alert types

alerts All notifications (see chapter on Notifier), are stored here

configuration Polled configuration information is stored here

discover_profiles Discovery profiles

enterprise List of enterprise numbers

groups List of groups configured in the system

groups_stats_summary State summary by group, updated each default poll period

language Languages supported

language_web The translations for the WEB UI

locations List of Longitude and Latitude Coordinates for Maps

mib MIBs currently loaded in the system

	 DATABASE  |	 91

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

TABLE NAME DESCRIPTION

mib_object_values MIB object detail definitions

mib_objects MIB objects loaded

monitor_cfg The entire monitor configuration

monitor_cfg_frequency The frequency of each monitor

monitor_description The description of the monitorTypes

monitor_engines The list of remote pollers (monitor engines) running

monitor_exceptions Exception definitions (See the chapter ‘EXCEPTIONS’)

monitor_group Stores monitor IDs by group

monitor_object The objects defined in the monitorTypes

monitor_object_unit The units supported by the objects

monitor_stats The template table used to create new data tables

monitor_stats_tables List of data tables presently in the database

monitor_temp TBD

monitor_type Details for all Monitor Types registered in the system

monitor_type_relations All relation definitions between Monitor Types

monitor_type_stats_summary State summaries for Monitor Types, updated each poll

organization List of organizations

power_inputs List of power inputs

power_inputs_hourly Hourly costs for power inputs

relations Relates monitors by ID, type and object

reports List of pre-defined reports (UI)

reports_saved List of saved report files

scheduled_jobs All scheduled jobs in the database

92	 |  DATABASE

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

TABLE NAME DESCRIPTION

service_thresholds Thresholds for SLAs (not currently used)

syslog Stores captured syslog messages

system_cfg TBD

system_info Stores version information about Schema, Monitor Types

system_messages Logged system information. Purged daily by default.

tiles Dashboard configurations (UI)

trapbuckets Trap categories called ‘buckets’ (Trap Manager)

trapconditions Conditions by Filter (Trap Manager)

trapfilters Trap Filter definitions (Trap Manager)

traps Stores captured SNMP Traps (Trap Engine)

user_access_log User login / logout time and date

user_detail Extra information on users (UI)

user_group_access Relates users to group access priviledges (UI)

user_info Basic information about users like username, email. (UI)

user_notes User defined notes (UI)

user_profile User Profiles for quick user creation

user_views Dashboard details by user (UI)

user_views_layout Dashboard layout by Dashboard ID (UI)

	 EXCEPTIONS ENGINE  |	 93

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

Exception Engine

The exception engine is a critical component that analyzes polled data in memory, in
REALTIME (i.e. it does not query the database nor does it run ‘jobs’ over historical
data). The engine compares the data with pre-defined rules in the system (those rules
are definied in the ‘monitor_exceptions’ table), and based on the definition criteria can
trigger a number of actions based on those rules.

Please see the cMonitorType.xsd schema file in the system directory for detailed
information about supported parameter types.

Exception Parameters
ID - the database ID of the exception
MONITOR_TYPE - the monitor type the exception is based on
OBJECT_ID - the object the monitor is based on
COMPARE_VALUE - the value to compare the polled value to
COMPARE_TYPE - the type of comparison to make (see ParamComparatorType)
COMPARE_OBJECT - object to compare to (see ParamObjectComparatorType)
ACTION - the action to perform - Notify, etc. (see ExceptionActionType)
SEVERITY_ID - the severity to assign if Notify (see NotificationSeverityType)
TRIP_COUNT - the number of times it must occur to trigger an action
RESET_COUNT - the number of times it must NOT occur to trigger a reset
REALTIME_POLL_PERIOD - if action is set to REALTIME, the poll period in ms
ENABLED - is this exception enabled (allows turning on/off exceptions without delete)
OBJECT_GROUP_ID - allows grouping of multiple exceptions together to trigger
MONITOR_ID - allows specific targeting of the exception for a single Monitor
EXCEPTION_TEXT - the user visible description text of the exception

Triggering an Exception
Exceptions are based on a particular object or set of objects in a monitor type. When
these objects have data that crosses a certain threshold or causes an exception definition
to be evaluated as ‘true’, then an ‘exception’ is triggered. Depending on the action, either

94	 |  EXCEPTIONS ENGINE

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

a Notification will be created (please see the section on ‘Notifier’), or the particular
monitor that triggered the exception can be watched for some additional time at an
adjusted polling frequency to see if there are additional trips or if the situation clears
itself up.

	 NOTIFIER  |	 95

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

Notifier

The NotifierEngine is in charge of receiving, managing and alerting on all events
created by the system. Events can come through either the Exception Engine, the API, or
otherwise be created by the system itself in the case of agent specific reachability events,
system errors, or other miscellaneous occurances. If it is desired that the Notifier does not
run or process events, it can be disabled (see the system property notifier_disabled). Notifier
actions include sending an email, logging to a database, and also playing an Audio File
(see the system property notifier_audio_url).

Notifier Users
Each user in the system (defined in the database, if used), has a notifier property. If the
email is set, then when a notification is created, if the user is in the notification group,
that user will receive an email.

Notifier Events
Events in the notifier have a lifespan (see the system property notifier_event_expire_period).
Once created, depending on system configuration, an alert will be sent out initially. Then,
there is a repeat period, in which after that period another alert will be sent. After the
expire period, if the event has not been reissued by the system, it will be deleted from the
system and alerts will not be sent out anymore (this is like an automatic clear). Events
that are cleared via the API or internally (i.e. the situation rights itself), will not send out
periodic alerts and will be deleted during the maintenance phase.

Duplicate Events
If a duplicate event is created and sent to the Notifier before a timeout period has passed
(see the system property notifier_event_timeout_period), then it will become part of the
existing event, and the last updated time will be set, essentially incrementing the existing
counter and restarting the clock. If the event continues to be sent by the system, the event
will essentially never ‘die’, and will repeatedly be alerted on until the user manually
clears it or the situation that caused the event is fixed.

96	 |  REPORT ENGINE

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

Report Engine

Jaguar has an embedded Report Engine that will produce output in XML or JSON
format. Reports can be scheduled internally by the engine itself (i.e. from scheduled
jobs defined by users), or they can be run ad-hoc via the API. The report engine can be
disabled by modifying the system property reportengine_disabled.

Report Types
The following types of reports are supported:

Single Series

A single-series report is a report of a single variable over time.

Multi-Series

A multi-series report is a report of one or more variables over time.

Multi-Subject

A multi-subject report is a report for a single variable, over multiple subjects (i.e.
monitors), over time.

Top-N Report

A top-N report is a volume report for a single variable for the top-N subjects over a
period of time.

PDF Reports
The engine can also create PDF reports. The PDFs are generated by a third party library
called jFreeChart and a supporting library named iText (which is a commercial product).
Users of PDF reports must pay a royalty fee (as part of the license cost), so we can in
turn pay the iText Corporation.

	 REPORT ENGINE  |	 97

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

Running and Retrieving Reports
To run a report, and get the result, a report must be added to the scheduler using the API
(see the API command report.schedule.add). Once the report is scheduled, a report_id will be
returned.

To get the report results, again the API must be called (please see the API command
report.results.get). If the results are ready, they will simply be returned as XML text (or as
JSON text if that was specified in the options). If they are not ready, a return code of
“RUNNING”, “FAILED”, or “ERROR” will be returned.

Report Arguments via API

Here is an example API call to schedule and run a report via the API.

./xmlApiClient -o report.schedule.add -i report_topn
-v “outputformat=xml&reportname=JaguarReport&reporttyp
e=4&charttype=8&reportcomponent=1&monitor_type=router-
generic&variables=bytes_total&datatype=hourly&periodtype=la
st24hours&pollfrequency=60000”

This particular example shows a request for a topN report, in XML format, named
‘JaguarReport’, which is going to show us the top-10 monitors using the monitor_type
‘router-generic’ for the variable ‘Total Bytes’, hourly rolled up data, over the last 24
hours, on data with a poll frequency of 60s.

96	 |  REPORT ENGINE

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

Report parameter arguments are as follows:

ARGUMENT DESCRIPTION
outputformat the output format of the resulting report. options are ‘xml’ or ‘json’
reportname the name of the report. does not have to be unique but cannot hurt
reporttype integer representing the type of report

0=NONE
1=SINGLE_SERIES
2=MULTI_SERIES
3=MULTI_SUBJECT
4=TOPN

charttype integer representing the type of chart

1=CHART_BAR_HORIZ
2=CHART_BAR_HORIZ_STACK
3=CHART_BAR_VERT
4=CHART_BAR_VERT_STACK
5=CHART_LINE
6=CHART_AREA
7=CHART_AREA_STACK
8=CHART_PIE
9=CHART_DOUGHNUT
10=CHART_XY
12=CHART_BAR_HORIZ_TOPN
13=CHART_BAR_VERT_TOPN
14=GRID
15=EXPORT_CSV)

	 REPORT ENGINE  |	 99

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

ARGUMENT DESCRIPTION
reportcomponent the component to run the report on

1=Monitor
2=Relation
3=Group

monitor_type The Monitor Type to base the report on. Only valid reports are TopN.
variables the variable(s) to collect the data from
datatype specifies type of data to query. Valid values:

RAW, RAW_RATE, HOURLY, HOURLY_RATE, DAILY, DAILY_
RATE

The “_RATE” types simply divide the results by time to get a rate.

periodtype the period over which to run the report:

LIVECHART - live chart which would give the last poll period
LASTHOUR - last hour of data
LAST6HOURS - last 6 hours of data
LAST12HOURS - last 12 hours of data
LAST24HOURS - last 24 hours of data
LAST7DAYS - last 7 days of data
LAST30DAYS - last 30 days of data
CUSTOM - use for custom date ranges (use with sd and ed args)

pollfrequency the frequency tells the engine which tables to query data for and
whether or not to use RAW or ROLLED data

sd start date (in milliseconds) to be used with CUSTOM periodtype
ed end date (in milliseconds) to be user with CUSTOM periodtype

96	 |  REPORT ENGINE

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

Report Results
The format of the results is returned in a structure that is fairly easy to parse. A “chart”
object is returned, and inside of that, unit definitions, category definitions (for axis labels
- usually time), and one or more datasets... inside each dataset is a ‘set’ object which is
itself just a single datapoint.

Report XML

Here’s an example of a shortened report result. Each category has a category id (catid),
and then in the dataset set objects, they each refer to the catid. That way, the datapoint
lines up with the category, which is in this case, a time label.

<chart caption=’Utilization’ yAxisName=’Percent - gauge’ 	
	 showLegend=’1’ slantLabels=’1’ xAxisName=’Time’>
 <units>
	 <unit label=’Percent - gauge’ id=’PERCENT_GAUGE’ />
 </units>
 <categories>
	 <category label=’Fri Nov 16 15:18:23’ catid=’1’ />
	 <category label=’Fri Nov 16 15:19:23’ catid=’2’ />
 </categories>
	 <dataset id=’util_line_in’ seriesname=’BW Util’>
		 <set value=’0.005582666666666666’ catid=’1’ />
		 <set value=’0.005342666666666667’ catid=’2’ />
	 </dataset>
</chart>

	 REPORT ENGINE  |	 101

Jaguar Technical Reference Guide Jaguar Technical Reference Guide

Chart Definition XML Structure

Following is an example of the report return result XML structure. For a multi-series or
multi-subject report, there will be several datasets, respectively. For a single-series or
TopN report, there will only be 1 dataset.

<chart>
	 <units>
		 <unit/>
	 </units>
	 <categories>
		 <category>
		 </category>
	 </categories>
	 <dataset>
		 <set/>
		 <set/>
	 </dataset>
</chart>

102	 |  GLOSSARY

Jaguar Technical Reference Guide

Jaguar Technical Reference Guide

Glossary

AGENT
A piece of software (acting as an ‘agent’), that’s being monitored, is addressable using
TCP/IP (or some other addressing scheme), and has X number of monitored properties
(and most probably Y number of ‘Monitors’). Internally, the monitorengine uses
‘Agents’. The term ‘Agent’ is used interchangably with ‘Host’ and ‘Device’.

DEVICE
A machine that’s being monitored. Same thing as a ‘Host’ or ‘Agent’.

ENGINE
A software component with various properties that runs in it’s own thread, in perpetuity
until the entire system is shut down.

HOST
A device or agent that’s being monitored. Used interchangebly with ‘Agent’ or ‘Device’

MONITOR
A group of 1 or more statistics being monitored on an ‘Agent’.

POOL
A group of ‘engines’. Each pool can be configured in terms of size and component type.
Busy engines of a certain type will be managed by the ‘Pool’ of that specific type. When
a new ‘Engine’ is needed, the ‘Pool’ will dynamically create one. When an engine is
finished it’s work, it will be returned to the ‘Pool’ for later use.

POLLER
A software component that ‘polls’ or requests data at specific intervals from an ‘Agent’,
in discrete packets organized by ‘Monitor’

REALTIME (ANALYSIS)
Data Analysis done in memory, in real-time.

REALTIME (POLLING)
Data acquistion (polling), done in intervals from 100ms to 30 seconds.

ByteSphere LLC

260 Franklin Street, Floor 11

Boston, MA 02110

USA

617-475-5209

support@oidview.com

www.oidview.com

